System Size and Energy Dependence of Elliptic Flow

Alice C. Mignerey, University of Maryland for the PHOBOS Collaboration

Ptos Collaboration (August 2005)

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Zhengwei Chai, Vasundhara Chetluru, Edmundo García, Tomasz Gburek, Kristjan Gulbrandsen, Clive Halliwell, Joshua Hamblen, Ian Harnarine, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Jay Kane, Piotr Kulinich, Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Eric Richardson, Christof Roland, Gunther Roland, Joe Sagerer, Iouri Sedykh, Chadd Smith, Maciej Stankiewicz,

Peter Steinberg, George Stephans, Andrei Sukhanov, Artur Szostak, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Donald Willhelm, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Shaun Wyngaardt, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW NATIONAL CENTRAL UNIVERSITY, TAIWAN UNIVERSITY OF MARYLAND

BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF ROCHESTER

Past Studies of Elliptic Flow of charged hadrons in Au-Au Collisions

Centrality Dependence

B.B. Back et al. (PHOBOS Collaboration), nucl-ex/04070I2

Energy and η dependence

B.B. Back et al. (PHOBOS Collaboration), Phys. Rev. Lett. 94, I22303 (2005)

Error bars: I σ statistical Error boxes: 90\% C.L systematic Centrality range 0-40\%

Alice C. Mignerey, PANIC 2005, Santa Fe, NM

Measuring Flow in PHOBOS

Hit-Based Method

$|n|<5.4$
Octagon covers

If reaction plane uses $\eta=0.1$ to 3.0 then flow found for $\eta=-0.1$ to -3.0

Track-Based Method $|\eta|<1.0$

Alice C. Mignerey, PANIC 2005, Santa Fe, NM

System Size Dependence for $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{Au}-\mathrm{Au}$

Comparing the number of participants

Mid-central Au-Au

Central $\mathrm{Cu}-\mathrm{Cu}$

G. Roland et al., Proc. QM2005, nucl-ex/05I0042 and
B.B. Back et al. (PHOBOS Collaboration), PRL 91,052303 (2003)

Alice C. Mignerey, PANIC 2005, Santa Fe, NM

System Size Dependence for $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{Au}-\mathrm{Au}$

Comparing the number of participants

Mid-central Au-Au
<Npart> 99
35-40\%

Central $\mathrm{Cu}-\mathrm{Cu}$

<Npart> 100
But the shapes of the overlap $3-6 \%$ regions are very different

Elliptic flow of $\mathrm{Cu}-\mathrm{Cu}$ compared to $\mathrm{Au}-\mathrm{Au}$ η dependence

$\mathrm{Cu}-\mathrm{Cu}$
S. Manly et al., Proc. QM05, nucl-ex/05I003I
$\mathrm{Cu}-\mathrm{Cu}$ about 20% lower than $\mathrm{Au}-\mathrm{Au}$

Elliptic flow of $\mathrm{Cu}-\mathrm{Cu}$ - centrality dependence

Error bars: I σ statistical
Error boxes: 90\% C.L systematic

S. Manly et al., Proc. QM05, nucl-ex/05I003।

Comparison of $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{Au}-\mathrm{Au}$

Au-Au: B.B. Back et al. (PHOBOS Collaboration), nucl-ex/04070I2 Cu-Cu: S. Manly et al., Proc. QM05, nucl-ex/051003I

Important features:

Very different elliptic flow for the same Npart -
But remember these had very different overlap geometries

CuCu flow still significant at most central collisions

Comparison of $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{Au-}$

Au

Important features:

Very different elliptic flow for the same Npart But remember these had very different overlap geometries

CuCu flow still significant at most central collisions

Can we understand this in terms of geometry?

Alice C. Mignerey, PANIC 2005, Santa Fe, NM

Eccentricity $-\varepsilon$

a representation of geometrical overlap

$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Au-Au collision
with Npart $=78$

Au-Au collision
with Npart $=64$

Eccentricity $-\varepsilon$

a representation of geometrical overlap

$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Au-Au collision with Npart $=78$

Au-Au collision with Npart $=64$

Sample of Cu-Cu collisions

Gives negative eccentricity \mathcal{E}

$\mathrm{Cu}-\mathrm{Cu}$ collision with Npart $=33$
$\mathrm{Cu}-\mathrm{Cu}$ collision with $\mathrm{Npart}=28$

$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Alice C. Mignerey, PANIC. 2005, Santa Fe, NM

Sample of Cu-Cu collisions

Principal axis transformation

$\mathrm{Cu}-\mathrm{Cu}$ collision with Npart $=33$
$\mathrm{Cu}-\mathrm{Cu}$ collision with Npart $=28$

$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Maximizes the eccentricity

Effect of the eccentricity definition

Standard

Participant

Alice C. Mignerey, PANIC 2005, Santa Fe, NM

Comparison of standard and participant eccentricity

Standard Eccentricity

Participant Eccentricity

Comparison between Systems and Energies

(I/<S>)dN/dy scaling:
C.Adler et al. (STAR), PRC 66034904 (2002)
A.M. Poskanzer and S.A.Voloshin, Nucl. Phys. A66I, 34Ic (I999)
J. Barrette et al. (E877), PRC 5 I, 3309 (I995); 55, 1420 (1997)

Au-Au: B.B. Back et al. (PHOBOS Collaboration), nucl-ex/0407012
Cu-Cu: S. Manly et al., Proc. QM05, nucl-ex/051003I

$$
\begin{aligned}
& \mathrm{I} /\langle\mathrm{S}\rangle \text { overlap area } \\
& \text { measured } \mathrm{dN} \mathrm{ch}^{/ \mathrm{d} \eta} \\
& \text { corrected to } \mathrm{dN}_{c h} / \mathrm{dy}
\end{aligned}
$$

G. Roland et al., Proc. QM2005, nucl-ex/05I0042

Alice C. Mignerey, PANIC 2005, Santa Fe, NM

Summary and Conclusions:

PHOBOS has measured elliptic flow for charged hadrons in $\mathrm{Cu}-\mathrm{Cu}$ at 62.4 and 200 GeV as a function of centrality and pseudorapidity

Demonstrated the importance of understanding the geometry - definition of eccentricity

When expressed in terms of PARTICIPANT eccentricity, the centrality dependence of v_{2} / ε is consistent for $\mathrm{Cu}-\mathrm{Cu}$ and $\mathrm{Au}-\mathrm{Au}$ and scales with other elliptic flow measurements at AGS, SPS and RHIC energies

