Elliptic flow fluctuations in 200 GeV Au+Au collisions

Burak Alver for the Figure S collaboration

Massachusetts Institute of Technology (alver@mit.edu)

Early Time Dynamics in Heavy Ion Collisions Montreal, Canada

PHOBOS collaboration

 Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Vasundhara Chetluru, Edmundo García, Tomasz Gburek, Joshua Hamblen, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Christof Roland,
Gunther Roland, Joe Sagerer, Peter Steinberg, George Stephans, Andrei Sukhanov, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Bolek Wysłouch

46 scientists, 8 institutions, 9 PhD students

ARGONNE NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW NATIONAL CENTRAL UNIVERSITY, TAIWAN UNIVERSITY OF MARYLAND BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF ROCHESTER

Elliptic flow for different species

Elliptic flow and Standard Eccentricity

No scaling between Cu+Cu and Au+Au

Au+Au, 200,130,62.4+19.6 GeV: PRL 94 122303 (2005) Cu+Cu, 200+62.4 GeV: nucl-ex/0610037 (acc.to PRL) Cu+Cu, 22.4 GeV: prel. QM06

STAR, PRC 66 034904 (2002) Voloshin, Poskanzer, PLB 474 27 (2000) Heiselberg, Levy, PRC 59 2716, (1999)

Elliptic flow and participant eccentricity

Scaling between Cu+Cu and Au+Au

Au+Au, 200,130,62.4+19.6 GeV: PRL 94 122303 (2005) Cu+Cu, 200+62.4 GeV: nucl-ex/0610037 (acc.to PRL) Cu+Cu, 22.4 GeV: prel. QM06

Participant Eccentricity

STAR, PRC 66 034904 (2002) Voloshin, Poskanzer, PLB 474 27 (2000) Heiselberg, Levy, PRC 59 2716, (1999)

Expected elliptic flow fluctuations

- Participant eccentricity model makes a prediction:
 - Assuming $V_2 \propto \epsilon_{part}$

 For fixed impact parameter, if eccentricity fluctuates eventby-event, so should v₂.

Expected elliptic flow fluctuations

• Participant eccentricity model makes a quantitative prediction:

Question: What is the relative abundance of $2 v_2$'s in "data"?

Question: What is the relative abundance of $2 v_2$'s in "data"?

$$g(v_2^{obs}) = f_a K_a(v_2^{obs}) + f_b K_b(v_2^{obs})$$

 $K(v_2^{obs}, v_2)$

0.1

Kernel – Response Function

Modified HIJING + GEANT AuAu 200GeV

In real life v₂ can take a continuum of values

$$g(v_2^{obs}) = \int_0^1 K(v_2^{obs}, v_2) f(v_2) dv_2$$

If
$$K(v_2^{obs}, v_2) = \exp\left(\frac{-(v_2^{obs} - v_2)^2}{2\sigma_{stat}^2}\right)$$
 Then $\sigma^2 = \sigma_{dyn}^2 + \sigma_{stat}^2$

Elliptic Flow Fluctuations at PHOBOS Burak Alver (MIT)

However
$$K(v_2^{obs}, v_2, n) = \frac{V_2^{obs}}{\sigma_n^2} e^{-\left(\frac{V_2^{obs} + v_2^2}{2\sigma_n^2}\right)} I_0(\frac{-V_2^{obs}V_2}{\sigma_n^2})$$

The analysis has 3 main steps: Measuring v₂^{obs} event-by-event in data: g(v₂^{obs}) Calculating the Kernel: K(v₂^{obs},v₂) Extracting dynamical fluctuations: f(v₂)

$$g(v_2^{obs}) = \int_0^1 K(v_2^{obs}, v_2) f(v_2) dv_2$$

Event-by-event measurement of v_2^{obs}

- PHOBOS Multiplicity Array
 - -5.4<η<5.4 coverage
 - Holes and granularity differences
- Usage of all available information in event to determine event-byevent a single value for v^{obs}

Hit Distribution

Elliptic Flow Fluctuations at PHOBOS

Burak Alver (MIT)

Event-by-event measurement of v₂^{obs}

Define probability distribution function (PDF) for hit positions:

$$P(\eta, \phi; v_2^{obs}, \phi_0) = \underbrace{\frac{1}{s(v_2^{obs}, \phi_0, \eta)}}_{Probability distribution function}} 1 + 2v_2(\eta) \cos(2\phi - 2\phi_0)]$$

Normalization assures integral of PDF folded with the acceptance is the same for different values of v_2^{obs} and ϕ_0 .

$$s(v_2^{obs}, \phi_0; \eta) = \int A(\eta, \phi) [1 + 2v_2(\eta) \cos(2\phi - 2\phi_0)] d\phi$$

Acceptance

Event-by-event measurement of v_2^{obs}

Define probability distribution function (PDF) for hit positions:

$$\mathsf{P}(\eta,\phi; \mathbf{v}_{2}^{\text{obs}},\phi_{0}) = \frac{1}{\mathsf{s}(\mathsf{v}_{2}^{\text{obs}},\phi_{0},\eta)} [1 + 2\mathsf{v}_{2}(\eta) \cos(2\phi - 2\phi_{0})]$$

We parameterize $v_2(\eta)$ using known shape from previous measurements:

Event-by-event measurement of v_2^{obs}

Define probability distribution function (PDF) for hit positions:

$$\mathsf{P}(\eta,\phi; \mathbf{v}_{2}^{\text{obs}},\phi_{0}) = \frac{1}{\mathsf{s}(\mathbf{v}_{2}^{\text{obs}},\phi_{0},\eta)} [1 + 2\mathbf{v}_{2}(\eta) \cos(2\phi - 2\phi_{0})]$$

For a given event with n hits, the likelihood of v_2^{obs} and ϕ_0 :

$$L(v_2^{obs}, \phi_0) = \prod_{i=1}^{n} P(\eta_i, \phi_i; v_2^{obs}, \phi_0)$$

Maximizing L allows a measurement of v_2^{obs} and ϕ_0 event-by-event.

$$g(v_2^{obs}) = \int_0^1 K(v_2^{obs}, v_2) f(v_2) dv_2$$

Reminder: Kernel is the response of the measurement to input value of v_2 .

Response also depends on the observed multiplicity n.

Determining the kernel = "measuring" v_2^{obs} distributions in MC in bins of v_2 and n.

Elliptic Flow Fluctuations at PHOBOS

Determining the kernel = "measuring" v_2^{obs} distributions in MC in bins of v_2 and n.

 $< v_2^{obs} > and \sigma(v_2^{obs})$

1.5-10⁶ HIJING events Modified φ to include triangular or trapezoidal flow

Fitting $K(v_2^{obs}, v_2, n)$ with smooth functions reduces bin-to-bin fluctuations.

Theoretical distribution of $K(v_2^{obs}, v_2, n)$ modified for experimental effects is used as fit function:

Elliptic Flow Fluctuations at PHOBOS Burak Alver (MIT)

Event-by-event mean v₂ vs published results

- Standard methods
 - Hit- and track-based
 - Use reaction plane subeven technique
- Event-by-event:
 - PR04 Au+Au data
 - No magnetic field
 - 500.000 events
 - 10 vertex bins (-10cm<z_{vertex}<10cm)
 - Relate v_2^{obs} to $\langle v_2 \rangle$:

0.08 PHOBOS |η|<1 Au+Au 200GeV 0.06 >`_{0.04} Event-by-Event $\langle v_{2} \rangle$ Track-based v₂{EP} o. 0.02 Hit-based v₂{EP} Bars: 1-σ Stat. Errs. Boxes: 90% C.L. Sys. Errs 100 200 300 N_{part} arXiv:nucl-ex/0702036

 $<v_2>(|\eta|<1) = 0.5 \times (11/12 < v_2^{\text{triangular}} + < v_2^{\text{trapezodial}})$

Very good agreement of the event-by-event measured $v_{\rm 2}$ with the hit- and tracked-based published results

Submitted to PRL

Elliptic flow fluctuations: $\langle v_2 \rangle$ and σ_{v_2}

Elliptic Flow Fluctuations

Relative Fluctuations $(\sigma_{v_2}/\langle v_2 \rangle)$ are about 40%

Comparison to Participant Eccentricity Prediction

- Relative fluctuations $(\sigma_{v_2}/\langle v_2 \rangle)$ are about 40%
- Striking agreement with predictions from participant eccentricity.

- Modeling of interaction points with MC Glauber interpreted event-by-event, the participant eccentricity model, appears to be able to explain:
 - The magnitude of the mean elliptic flow in Cu+Cu wrt Au+Au
 - The magnitude of the elliptic flow fluctuations in Au+Au

Non-flow correlations

- Non-flow : all particle correlations other than flow
- Particle correlations may appear as flow fluctuations
 - Rephrase: the "statistical" fluctuations may be underestimated in the kernel
- We have undertaken two studies to understand non-flow effects
 - A kernel with non-flow correlations
 - included in systematic errors
 - Comprehensive study of nonflow effect as a function of correlation strength

Correlation Function

- To study effect of non-flow correlations on flow fluctuation measurement
 - Define correlation strength:

Background:

$$B_n(\Delta\eta,\Delta\phi) \sim \rho_n^I(\eta_1,\phi_1)\rho_n^I(\eta_2,\phi_2) = \frac{1}{n\sigma_n} \frac{d^2\sigma_n}{d\eta_1 d\phi_1} \bullet \frac{1}{n\sigma_n} \frac{d^2\sigma_n}{d\eta_2 d\phi_2} \bullet$$

arXiv:nucl-ex/0704.0966 Accepted for PRC

Correlation Function in HIJING

- Hijing has some of the correlation structure features in data
 - Compare with p+p collisions

PRC75, 054913 (2007)

Correlation Function in HIJING

- For baseline measurement, we use modified HIJING
 - No correlations in φ

Modified HIJING

No ϕ correlations

– Particles randomly given ϕ values from a PDF with flow

No Flow

Modified HIJING No φ correlations With Flow

Correlation Function in HIJING

- For systematic studies, we preserve correlations in HIJING
 - Particles are shifted in φ direction to obtain v_2 . PRC58 (1998) 1671

Results

- Measuring response function on HIJING with correlations
- Results move by at most 2%
 - Included in systematic errors

A MC particle generator

- HIJING might not be an accurate description for correlations
- To study effect of non-flow correlation on fluctuation measurement as a function of the correlation strength:
 - Need a simple MC event generator with correlations
- Inspired by cluster like correlations in data
- Nucl Phys B85, 61 (1975) PRC75 054913 (2007)
- "Clusters" of different cluster sizes and masses are produced independently, and decay into "particles".

Note: PHOBOS only sees hits. Only need to reproduce $dN/d\eta$ and 2-particle correlations

Correlation Function in Sample Model

- Clusters can be given some v₂
 - Particles will also have v_2

Correlation Function in Sample Model

Choosing one particle from each cluster, events with no correlations can be produced

Elliptic Flow Fluctuations

- Input flow fluctuations at the cluster level
- Compare measurement for samples w/ and w/o correlations
- We find evidence that the effect of non-flow correlation is small for relative fluctuations of 40%
- Ongoing work to quantify the dependence of the effect on correlation function
 - Possible to study various correlation structures

Summary

- PHOBOS has measured elliptic flow fluctuations in peripheral to semi-central Au+Au collisions at 200 GeV
 - Absolute fluctuations (σ_{v_2}) are about 0.02
 - Relative fluctuations ($\sigma_{v_2}/\langle v_2 \rangle$) are about 40%
 - The participant eccentricity predictions for the magnitude of the relative fluctuations are in striking agreement with the measurement
- Nonflow correlations have a small effect on the observed fluctuations signal.
 - Included in systematic errors
 - Working on better understanding the effect as a function of correlation strength.

Backup

Expected elliptic flow fluctuations

Correlation Function in pp collisions

1D correlation function HIJING

Burak Alver (MIT)

1D correlation function HIJING

1D correlation function Cluster Model

Cluster MC w/o corr.

Properties of the Sample Model shown

- Clusters produced independently
 - <p_⊤>=0.9GeV
 - Type 1 produced with probability = 0.31, Mass=0.9, Number of decay products=3
 - Type 2 produced with probability = 0.31, Mass=0.7, Number of decay products=2
 - Type 3 produced with probability = 0.31, No decay
 - Type 4 produced with probability = 0.07, Mass=0.3, Number of decay products=2
 - p_z distribution adjusted to match dN/d η in data.
 - Note : This is a sample model. These properties can be changed to obtain different correlation structures.
- Clusters decay to a certain kinematics with a probability proportional to the available phase space
- Global Momentum Conservation
 - Moving to the center of mass frame of the clusters