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Statistical errors

Cu+Cu
200, 62.4 GeV,
22.4 GeV prel.

Au+Au
200, 130, 
63.4, 19.4 GeV 

 | |η  < 1

Elliptic flow for different species

Au+Au, 200,130,62.4+19.6 GeV: PRL 94 122303 (2005)
Cu+Cu, 200+62.4 GeV: nucl-ex/0610037 (acc. to PRL) 
Cu+Cu, 22.4 GeV: prel. QM06
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Elliptic flow and Standard Eccentricity

Au+Au, 200,130,62.4+19.6 GeV: PRL 94 122303 (2005)
Cu+Cu, 200+62.4 GeV: nucl-ex/0610037 (acc.to PRL) 
Cu+Cu, 22.4 GeV: prel. QM06

Cu+Cu

Au+Au

Statistical 
errors only  Scale v2(η) to v2(y) 

    (10% lower)

 Scale dN/dη to dN/dy  
   (15% higher)

 S is overlap area 
    (MC Glauber)

Fine print:

No scaling between Cu+Cu and Au+Au

STAR, PRC 66 034904 (2002)
Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999)

Standard Eccentricity

b x

y

standard=
〈 y2−x2〉
〈 y2x2〉



Elliptic Flow Fluctuations at PHOBOS          Burak Alver (MIT)  5

Elliptic flow and participant eccentricity

Participants 

x'y'
Participant Eccentricity

b x

y

part=
 y

2− x
224 xy

2

 y
2 x

2

Au+Au, 200,130,62.4+19.6 GeV: PRL 94 122303 (2005)
Cu+Cu, 200+62.4 GeV: nucl-ex/0610037 (acc.to PRL) 
Cu+Cu, 22.4 GeV: prel. QM06

Statistical
errors only

Cu+Cu

Au+Au

Unmodified

Scaling between Cu+Cu and Au+Au

 Scale v2(η) to v2(y) 
    (10% lower)

 Scale dN/dη to dN/dy  
   (15% higher)

 S is overlap area 
    (MC Glauber)

Fine print:

STAR, PRC 66 034904 (2002)
Voloshin, Poskanzer, PLB 474 27 (2000)
Heiselberg, Levy, PRC 59 2716, (1999)
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Expected elliptic flow fluctuations

x'y'

b x

y

 v 2

〈v 2〉
∝

 part

〈part 〉

● Participant eccentricity model makes 
a prediction:

– Assuming v 2∝part

● For fixed impact parameter, if eccentricity fluctuates event-
by-event, so should v

2
.
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Expected elliptic flow fluctuations

● Participant eccentricity model makes 
a quantitative prediction:

Number of participants

 •   Baseline 
     90% C.L.

 part

〈part 〉

PHOBOS Glauber MC

x'y'

b x

y
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Method overview
Event by Event measurement

v2
obs distribution in “data”

g(v2
obs)

Kb(v2
obs)

Ka(v2
obs)

2 possible v2 values

Relative abundance in “data”

f1

f2

Demonstration Demonstration

Demonstration Demonstration

Question: What is the relative abundance of 2 v2’s in “data”?

V2a V2b

V2a

V2b
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Method overview
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Method overview
Event by Event measurement

v2
obs distribution in “data”

g(v2
obs)

Kb(v2
obs)

Ka(v2
obs)

2 possible v2 values

Relative abundance in “data”
fa

fb

Demonstration Demonstration

Demonstration Demonstration

Question: What is the relative abundance of 2 v2’s in “data”?

V2a V2b

V2a

V2b

g v2
obs=faKa v2

obs fbKbv2
obs
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f(v2) g(v2
obs)

Method overview

In real life v2 can take 

a continuum of values

v2
obs distribution in “data”Extracted true v

2
 distribution

Kernel – Response Function

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2
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Method Overview

Kv2
obs ,v2=exp

−v2
obs−v2

2

2stat
2

If Then 2=dyn
2 stat

2
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Method Overview

Kv2
obs ,v2=exp

−v2
obs−v2

2

2stat
2

If Then 2=dyn
2 stat

2

However Kv2
obs ,v2 ,n=

v2
obs

n
2 e

−  v2
obsv2

2

2n
2 

I0 
−v2

obsv2

n
2 

(J.-Y.Ollitrault, PRD (1992) 46, 226)
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Method Overview

However Kv2
obs ,v2 ,n=

v2
obs

n
2 e

−  v2
obsv2

2

2n
2 

I0 
−v2

obsv2

n
2 

(J.-Y.Ollitrault, PRD (1992) 46, 226)

The analysis has 3 main steps:
Measuring v2

obs event-by-event in data: g(v2
obs)

Calculating the Kernel: K(v2
obs,v2)

Extracting dynamical fluctuations: f(v2)

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2
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● PHOBOS Multiplicity Array
– -5.4<η<5.4 coverage

– Holes and granularity differences

● Usage of all available 
information 
in event to determine event-by-
event a single value for v

2

obs

Hit Distribution

Pseudo-rapidity

A
zi

m
ut

ha
l a

ng
le

dN/dη

Primary particles
Hits on detector

HIJING + Geant 
15-20% central

Pseudo-rapidity

~11 units in η

Event-by-event measurement of v2
obs
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Fixed 
v2

obs and φ0

Probability distribution function

η
φ

Event-by-event measurement of v2
obs

P, ; v2
obs ,0=

1
sv2

obs ,0,
[12v2 cos2−20]

s v2
obs ,0 ;=∫A  ,[12v2cos 2−20]d

Acceptance

Normalization

Define probability distribution function (PDF)for hit positions:

Normalization assures integral of PDF 
folded with the acceptance is the same 
 for different values of v2

obs and φ
0
.



Elliptic Flow Fluctuations at PHOBOS          Burak Alver (MIT)  17

Event-by-event measurement of v2
obs

P, ; v2
obs ,0=

1
sv2

obs ,0,
[12v2 cos2−20]

Define probability distribution function (PDF)for hit positions:

v2(η) = trapezoidal  

v2
obs

PHOBOS), PRC 72,  051901 (2005)

Au+Au, 200 GeV

Pseudo-rapidityv2(η) = triangular  

v2
obs

Au+Au, 200 GeV

Pseudo-rapidity

v2(η) = triangular
PHOBOS), PRC 72,  051901 (2005)

We parameterize v2(η) using known shape from previous 
measurements:
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Event-by-event measurement of v2
obs

P, ; v2
obs ,0=

1
sv2

obs ,0,
[12v2 cos2−20]

Define probability distribution function (PDF) for hit positions:

For a given event with n hits, the likelihood of  v2
obs and φ

0
:

Lv2
obs , 0=∏i=1

n
Pi ,i; v2

obs ,0

Maximizing L allows a measurement of v2
obs and φ

0
 event-by-event.
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Determining the kernel

Reminder: Kernel is the response of the measurement to 
input value of v

2
.

Response also depends on the observed multiplicity n.

Determining the kernel = “measuring” v
2

obs distributions in MC 
in bins of v

2
 and n.

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2

HIJING MC

v2
obs

v
2

obs distribution for fixed v
2
 and n
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Determining the kernel

Determining the kernel = “measuring” v
2

obs distributions in MC 
in bins of v

2
 and n.

K(v2
obs,v2,n)

1.5·106 HIJING events
Modified φ to include 

triangular or trapezoidal flow

HIJING MC

v2
obs

v
2

obs distribution for fixed v
2
 and n <v

2
obs> and (vσ

2
obs)
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Determining the kernel

(J.-Y.Ollitrault, PRD (1992) 46, 226)

(suppression)

(finite resolution)= C
n

D

K(v2
obs,v2,n)

HIJING MC
K(v2

obs,v2,n)
HIJING MC

Fitting K(v
2
obs,v

2
,n) with smooth functions reduces bin-to-bin 

fluctuations.

Theoretical distribution of K(v
2

obs,v
2
,n) modified for experimental effects 

is used as fit function:

v2AnBv2

Kv2
obs ,v2 ,n=

v2
obs

2 e
−  v2

obsv2
2

22 
I0 

−v2
obs v2

2 
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Determining the kernel

K(v2
obs,v2,n)

HIJING MC
Assuming that the true v2 distribution 
for a set of events in a given 
centrality class is independent of n, it 
is possible to integrate out the 
multiplicity dependence:

K v2
obs ,v2=∫K v2

obs , v2,nNndn

DATA
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Measured

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2

Constructed
from MC 

Extracting dynamical fluctuations
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Measured

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2

Constructed
from MC 

Gaussian Ansatz:

f v2=exp[−v2−〈v2〉 
2

2 v2

2 ]

Extracting dynamical fluctuations

f(v2)

Ansatz: true v2 distribution Expected g(v2
obs) for ansatz

g(v2
obs)f(v2) g(v2

obs)
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Measured

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2

Constructed
from MC 

Gaussian Ansatz:

f v2=exp[−v2−〈v2〉 
2

2 v2

2 ]

Extracting dynamical fluctuations

f(v2)

Ansatz: true v2 distribution Expected g(v2
obs) for ansatz

g(v2
obs)f(v2) g(v2

obs)
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Measured

g v2
obs=∫0

1
Kv2

obs ,v2 f v2dv2

Constructed
from MC 

Gaussian Ansatz:

f v2=exp[−v2−〈v2〉 
2

2 v2

2 ]

Compare expected g(v
2

obs) for trials with data:

Maximum-Likelihood fit → <v2> and σv2

Extracting dynamical fluctuations

f(v2)

Ansatz: true v2 distribution Comparison with data

g(v2
obs)f(v2) g(v2

obs)
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Event-by-event mean v2 vs published results

Very good agreement of the event-by-event measured v2 
with the hit- and tracked-based published results

● Standard methods

– Hit- and track-based

– Use reaction plane sub-
even technique 

● Event-by-event:

– PR04 Au+Au data

● No magnetic field
● 500.000 events
● 10 vertex bins 

(-10cm<zvertex<10cm)

– Relate v2
obs to <v2>:

<v2>(| |<1η ) = 0.5 x (11/12 <v2
triangular> + <v2

trapezodial>)

| |<1η

arXiv:nucl-ex/0702036
Submitted to PRL

Bars: 1-  σ Stat. Errs.
Boxes: 90% C.L. Sys. Errs.



Elliptic Flow Fluctuations at PHOBOS          Burak Alver (MIT)  28

Elliptic flow fluctuations: <v2> and σv2

Systematic errors:
● Variation in v2( )η
● Variation in dN/dη
● Variation of f(v2)
● MC response
● Vertex binning
● Ф0 binning
● Non-flow correlations

| |<1η

“Scaling” errors cancel in the ratio:
relative fluctuations, σv2/<v2>

– Two parameter fit to  event-
by-event results: <v2> and σv2

arXiv:nucl-ex/0702036
Submitted to PRL

Bars: 1-  σ Stat. Errs.
Boxes: 90% C.L. Sys. Errs.
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Elliptic Flow Fluctuations

Relative Fluctuations (σv2/<v2>) are about 40%

arXiv:nucl-ex/0702036
Submitted to PRL

Bars: 1-  σ Stat. Errs.
Boxes: 90% C.L. Sys. Errs.
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Comparison to Participant Eccentricity Prediction

● Modeling of interaction points with MC Glauber interpreted 
event-by-event, the participant eccentricity model, appears 
to be able to explain:

– The magnitude of the mean elliptic flow in Cu+Cu wrt Au+Au

– The magnitude of the elliptic flow fluctuations in Au+Au

– Relative fluctuations 
(σv2/<v2>) are about 40%

– Striking agreement with 
predictions from participant 
eccentricity.

arXiv:nucl-ex/0702036
Submitted to PRL
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Non-flow correlations

● Non-flow : all particle correlations other than flow

● Particle correlations may appear as flow fluctuations

– Rephrase: the “statistical” fluctuations may be 
underestimated in the kernel

● We have undertaken two studies to understand non-flow 
effects

– A kernel with non-flow correlations 
● included in systematic errors

– Comprehensive study of nonflow effect as a function of 
correlation strength



Elliptic Flow Fluctuations at PHOBOS          Burak Alver (MIT)  32

Correlation Function

● To study effect of non-flow correlations on flow fluctuation 
measurement

– Define correlation strength:

arXiv:nucl-ex/0704.0966
Accepted for PRC
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Correlation Function in HIJING

● Hijing has some of the correlation structure features in data

– Compare with p+p collisions 

Standard HIJING 200 GeV Au+Au Phobos Data 200 GeV p+p
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Correlation Function in HIJING

Modified HIJING 
No  correlationsφ

No Flow 

Modified HIJING 
No  correlationsφ

With Flow 

● For baseline measurement, we use modified HIJING

– No correlations in φ

– Particles randomly given  values from a PDF with flowφ
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Correlation Function in HIJING

Standard HIJING 
With  correlationsφ

No Flow 

Modified HIJING 
With  correlationsφ

With Flow 

● For systematic studies, we preserve correlations in HIJING

– Particles are shifted in  direction to obtain φ v
2
. PRC58 (1998) 1671
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Results

● Measuring response function on HIJING with correlations

● Results move by at most 2%

– Included in systematic errors

arXiv:nucl-ex/0702036
Submitted to PRL

Data – kernel with correlations
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A MC particle generator

● HIJING might not be an accurate description for correlations

● To study effect of non-flow correlation on fluctuation 
measurement as a function of the correlation strength:

– Need a simple MC event generator with correlations

● Inspired by cluster like correlations in data

● “Clusters” of different cluster sizes and masses are 
produced independently, and decay into “particles”.

Note: PHOBOS only sees hits. 
Only need to reproduce dN/d  and 2-particle correlationsη

Nucl Phys B85, 61 (1975)
PRC75 054913 (2007)
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Correlation Function in Sample Model

Cluster Model 
With  correlationsφ

No Flow 

Cluster Model
With  correlationsφ

With Flow 

● Clusters can be given some v
2.

– Particles will also have v
2
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Correlation Function in Sample Model

Cluster Model 
No  correlationsφ

No Flow 

Cluster Model 
No  correlationsφ

With Flow 

● Choosing one particle from each cluster, events with no 
correlations can be produced
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Elliptic Flow Fluctuations

● Input flow fluctuations at the cluster level

● Compare measurement for samples w/ and w/o correlations

● We find evidence that the effect of non-flow correlation is 
small for relative fluctuations of 40%

● Ongoing work to quantify the dependence of the effect on 
correlation function

– Possible to study various correlation structures
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Summary

● PHOBOS has measured elliptic flow fluctuations in 
peripheral to semi-central Au+Au collisions at 200 GeV

– Absolute fluctuations (σv2) are about 0.02

– Relative fluctuations (σv2/<v2>) are about 40%

– The participant eccentricity predictions for the magnitude of 
the relative fluctuations are in striking agreement with the 
measurement

● Nonflow correlations have a small effect on the observed 
fluctuations signal.

– Included in systematic errors

– Working on better understanding the effect as a function of 
correlation strength.
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Backup
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Expected elliptic flow fluctuations

Number of participants

 •   Baseline 
     90% C.L.

 part

〈part 〉

Baseline parameters:
● Nucleon-nucleon 
  cross section: σNN=41mb
● Inter-nucleon separation 
  distance: d=0.4fm
● Wood-saxon 
  radius: RA=6.38fm
● Skin depth: a=0.535fm
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Correlation Function in pp collisions
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1D correlation function HIJING
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1D correlation function HIJING
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1D correlation function Cluster Model
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Properties of the Sample Model shown

● Clusters produced independently

– <p
T
>=0.9GeV

– Type 1 produced with probability = 0.31, Mass=0.9, Number of decay products=3

– Type 2 produced with probability = 0.31, Mass=0.7, Number of decay products=2

– Type 3 produced with probability = 0.31, No decay

– Type 4 produced with probability = 0.07, Mass=0.3, Number of decay products=2

– p
z
 distribution adjusted to match dN/dη  .in data

– Note : This is a sample model. These properties can be changed to 
obtain different correlation structures.

● Clusters decay to a certain kinematics with a probability proportional to the 
available phase space

● Global Momentum Conservation

– Moving to the center of mass frame of the clusters


