RHIC & AGS Annual Users' Meeting

Hosted by Brookhaven National Laboratory

The Ridge at High $\Delta \eta$ and Evidence of Clustering

High Momentum Probes and the Medium's Response

May 27th, 2008

PHOBOS Collaboration

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts,
Richard Bindel, Wit Busza (Spokesperson), Vasundhara Chetluru, Edmundo García,
Tomasz Gburek, Joshua Hamblen, Conor Henderson, David Hofman, Richard Hollis,
Roman Hołyński, Burt Holzman, Aneta Iordanova, Chia Ming Kuo, Wei Li, Willis Lin,
Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer,
Andrzej Olszewski, Robert Pak, Corey Reed, Christof Roland, Gunther Roland, Joe Sagerer,
Peter Steinberg, George Stephans, Andrei Sukhanov, Marguerite Belt Tonjes, Adam Trzupek,
Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Frank Wolfs,
Barbara Wosiek, Krzysztof Woźniak, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW NATIONAL CENTRAL UNIVERSITY, TAIWAN UNIVERSITY OF MARYLAND BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNIVERSITY OF ILLINOIS AT CHICAGO UNIVERSITY OF ROCHESTER

Correlations Studies with PHOBOS

Exploit large η **-** ϕ **coverage of the PHOBOS detector**

PHOBOS Acceptance – by far the largest of all RHIC experiments

Vertex+Spec fill the Octagon holes

Goals

Insight into different stages of the system evolution

Two Measurements

- 1. Two-particle correlations with high- p_T trigger for Au+Au
- 2. Two-particle correlations in $(\Delta \eta, \Delta \phi)$ for p+p, Cu+Cu, Au+Au

Previous Triggered Correlation Data

Medium response to high-p_T probes near mid-rapidity

- ✓ broadening in $\Delta \phi$ of away-side compared to p+p
- \checkmark enhanced correlation ("ridge") at Δφ=0 and large Δη

Experimental Setup

High p_⊤ trigger tracks

 p_T > 2.5 GeV/c 0 < η_{trig} < 1.5

Associated hits

Full φ coverage Broad η coverage (-3<η<3)

Single layer of silicon No p_T information $p_T > 4 (\eta=3) - 35 \text{ MeV/c} (\eta=0)$ **Octagon** holes are filled using hits from the first layers of the **Spectrometer** and

Vertex detectors

Flow Subtraction

The scale factor, **a** , is calculated such that the yield after subtraction is zero at its minimum (ZYAM)

Ajitanand et al. PRC 72, 011902(R) (2005)

2008-05-27 BNL

PYTHIA p+p reference

- PHOBOS is limited by statistics in p+p
- We will compare our Au+Au results to PYTHIA, which reasonably reproduces STAR p+p data

Comparison of Au+Au and p+p

 $p_T^{trig} > 2.5 \text{ GeV/c}$ $p_T^{assoc} \ge 20 \text{ MeV/c}$

Ridge Extent in $\Delta \eta$

Correlated yield on near-side $(|\Delta \phi| < 1)$:

Ridge Extent in $\Delta \eta$

Correlated yield on near-side $(|\Delta \phi| < 1)$:

Triggered 2-particle correlations

Triggered 2-particle correlations

Integrated ridge yield

Integrated ridge yield

Edward Wenger

Summary

- Similar broadening of the away-side correlation in Δφ relative to p+p over the full Δη range
- Correlation at $\Delta \phi = 0$ and large $\Delta \eta$ ('ridge') persists to $\Delta \eta = 4$
- Ridge yield at large $\Delta \eta$ disappears as one goes to peripheral collisions, similar to excess yield over PYTHIA at small $\Delta \eta$

Inclusive 2-particle correlations

multiplicity independent 2-particle correlations No high p_T trigger! (soft physics)

Phys. Rev. C75(2007)054913

$$R(\Delta\eta, \Delta\phi) = <(n-1)\left(\frac{F_n(\Delta\eta, \Delta\phi)}{B_n(\Delta\eta, \Delta\phi)} - 1\right) >$$

Inclusive 2-particle correlations

Phys. Rev. C75(2007)054913

Inclusive 2-particle correlations

Phys. Rev. C75(2007)054913

In p+p, particles tend to be produced in correlated fashion

2-particle correlations

multiplicity independent 2-particle correlations

$$R(\Delta\eta, \Delta\phi) = <(n-1)\left(\frac{F_n(\Delta\eta, \Delta\phi)}{B_n(\Delta\eta, \Delta\phi)} - 1\right) >$$

 v_2 component: <2(n-1) v_2^2 >

Parameterize Cluster Properties

Cluster Size and Decay Width

 K_{eff} : effective cluster size √2 δ: cluster decay width

2-particle correlations in Cu+Cu and Au+Au

 v_2 component: <2(n-1) v_2^2 >

Edward Wenger

Extracting Cluster Parameters

Comparing Cu+Cu to Au+Au

For the same fraction of For the same N_{part} inelastic cross-section PHOBOS preliminary PHOBOS preliminary 3 3 $\mathsf{K}_{\mathsf{eff}}$ €€< p+p p+p PHOBOS Cu+Cu 200 GeV PHOBOS Cu+Cu 200 GeV PHOBOS Au+Au 200 GeV PHOBOS Au+Au 200 GeV 0.5 0.9 100 200 300 0.6 0.8 0.7 0 N_{part} 1-σ/σ

- Cluster size decreases with centrality in A+A
- Cluster size scales with geometry!

Centrality dependence of clusters

Model comparison:

• Intriguingly, AMPT shows similar geometry scaling of cluster size.

• The decrease of cluster size with centrality in AMPT is related to hadronic re-scattering processes.

Study cluster properties differentially in $\Delta \varphi$

Au+Au@200GeV, 0-10%

Elliptic flow is averaged out by construction.

 Away-side clusters are smaller and depend more strongly on centrality than near-side ones

 Splitting between near- and awayside is more pronounced for Au +Au than Cu+Cu collisions

One possible explanation: Absorption of cluster decay products?

Summary

- Particles in heavy ion collisions are created in clusters close in size to those in p+p collisions
- Cluster size decreases with centrality, appears to depend on fraction of crosssection, not N_{part}
- Significant differences between near- and away-side clusters

Final Summary

- PHOBOS can measure correlations at large $\Delta\eta$
- 'Ridge' correlation extends over very large pseudorapidity range
- Hadrons are not produced independently but rather in 'clusters' whose properties scale with collision geometry

Backup Slides

Estimating the Flow Term

• Parameterize published PHOBOS measurements as $v_2(N_{part}, p_T, \eta) = A(N_{part}) B(p_T) C(\eta)$

 Correct v₂(N_{part},<p_T^{trig}>,η_{trig}) for occupancy and v₂(N_{part},<p_T^{assoc}>,η_{assoc}) for secondaries

 $1 + 2V(\Delta \eta) \cos(2\Delta \phi)$

 $V = \langle v_2^{trig} \rangle \langle v_2^{assoc} \rangle$

v2 Subtraction Systematics

- The dominant systematic error in this analysis is the uncertainty on the magnitude of v₂^{trig} v₂^{assoc}
 - ~14% error on $v_2^{trig} v_2^{assoc} (\eta=0)$
 - ~20% error on $v_2^{trig} v_2^{assoc} (\eta=3)$
 - In the most central collision -where flow is small compared to the correlation -- the error on v₂^{trig} v₂^{assoc} can exceed 50%.

More centrality bins

Pair acceptance

Cluster Width

Methodology

Two-particle correlation function:

Cluster Model Details

Separating flow and non-flow

Separating flow and non-flow

Estimating δ for large $\Delta \eta$

We use:
$$\delta_{data}(\eta_1, \eta_2) = 1.6 \times \delta_{hijing}(\eta_1, \eta_2) |\eta_1 - \eta_2| > 2$$

Values of $\sqrt{\langle \delta \rangle}$ change by at most 12% if the coefficient is changed to 0 or 3.2

