# Elliptic Flow at PHOBOS and the Eccentricity Conundrum 

## Richard Bindel

## For the Piteres Collaboration

## Pifores Collaboration (June 2006) <br> 

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Zhengwei Chai, Vasundhara Chetluru, Edmundo García, Tomasz Gburek, Kristjan Gulbrandsen, Clive Halliwell, Joshua Hamblen, Ian Harnarine, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Jay Kane, Piotr Kulinich,

Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Eric Richardson, Christof Roland, Gunther Roland, Joe Sagerer, louri Sedykh, Chadd Smith,
Maciej Stankiewicz, Peter Steinberg, George Stephans, Andrei Sukhanov, Artur Szostak, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Donald Willhelm, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Shaun Wyngaardt, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY
INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW
NATIONAL CENTRAL UNIVERSITY, TAIWAN
UNIVERSITY OF MARYLAND

BROOKHAVEN NATIONAL LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY
UNIVERSITY OF ILLINOIS AT CHICAGO
UNIVERSITY OF ROCHESTER

## Measurement of elliptic flow at PHOBOS

Advantages of the PHOBOS detector:
Excellent Global Shape Detection:
Octagon and Rings provide nearly full azimuthal coverage over a wise range of pseudorapidity.


Centrality Measure


> PID and Clean Signal:

Two Spectrometer Arms provide particle identification and noise rejection by means of tracking algorithm

## Measurement of elliptic flow at PHOBOS

Two Analysis Techniques are used at PHOBOS:

Based Method
(Hits in the octagon and rings)

Track $\rightarrow$ Based Method (Tracks in the spectrometer also)

Both employ the reaction plane / subevent technique, in which the orientation of the reaction is found in one portion of the detector, while another detector region is subsequently correlated to it.

## Measurement of elliptic flow at PHOBOS

Hit Based Method


Pitoros

## Measurement of elliptic flow at PHOBOS

Hit Based Method


Pitoros

## Measurement of elliptic flow at PHOBOS

Hit Based Method


Pitoros

## Measurement of elliptic flow at PHOBOS

$\ulcorner$ Track $\rightarrow$ Based Method


Pitoros

## Measurement of elliptic flow at PHOBOS

$\Gamma$ Track $\rightarrow$ Based Method


Pitoros

## Measurement of elliptic flow at PHOBOS

$\Gamma$ Track $\rightarrow$ Based Method


Pitoros

## Measurement of elliptic flow at PHOBOS

An event at PHOBOS can be divided many ways...


Piteros

## Measurement of elliptic flow at PHOBOS

An event at PHOBOS can be divided many ways...

..but the resulting picture remains consistent
Good agreement using various $\eta$ slices is a valuable cross-check

## New Tests for Hydrodynamics

While Au+Au continues to hold many challenges for hydrodynamics, Cu+Cu provides a number of new and unique experimental constraints.


## Why study flow in $\mathrm{Cu}+\mathrm{Cu}$ ?

## roughly same number of participants

## Central CuCu collision

## Why study flow in $\mathrm{Cu}+\mathrm{Cu}$ ?



Mid-central AuAu collision

Some observables scale with number of participants

## Similar dN/d $\eta$

roughly same number of participants

Central CuCu collision

B.B. Back et al., (the PHOBOS Collaboration) PRL 91,052303 (2003) G. Roland et al., (PHOBOS Collaboration) Proc. QM2005, nucl-ex/0510042

## Why study flow in $\mathrm{Cu}+\mathrm{Cu}$ ?



Pitoros

## Why study flow in $\mathrm{Cu}+\mathrm{Cu}$ ?



Mid-central AuAu collision

Some observables scale with number of participants


Central CuCu collision

Flow is expected to depend on
However...

## Similar dN/d $\eta$

Using two species lets us change the geometry while holding the number of participants constant

## What can we say about the geometry?

The shape of the participant region is generally expressed by the eccentricity

$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Cartoon of a collision.

$x$-axis along the reaction plane $y$-axis is the major axis of the ellipse

I'll denote eccentricity in this orientation as

## $\varepsilon_{\text {standard }}$

(of course, experimentally, the position of each nucleon is not observable and therefore neither is $\sigma_{x}{ }^{2}$ or $\sigma_{y}{ }^{2}$ )

## Bridging experiment and geometry

Since experiments cannot measure the underlying geometry directly, models remain a necessary evil.


Models are also needed to connect fundamental geometric parameters with each other

## Modeling the Geometry

Nearly the most straightforward approach to describing collision geometry has been to invoke Glauber's formalism for the scattering of a particle off of a nuclear potential.

Glauber Assumptions
-Nucleons are distributed according to a density function (e.g. Woods-Saxon)

- Nucleons proceed in a straight line, undeflected by collisions
- Irrespective of previous interactions, nucleons interact according to the inelastic cross section (measured in pp collisions).


## Modeling Geometry

One application of the Glauber formalism is a Monte Carlo technique
$\square$

This has been a very successful tool at RHIC in relating fundamental geometric variables
(cross section, impact parameter, number of participating nucleons, etc.)

## GlauBall Algorithm

"GlauBall" is the PHOBOS implementation of a Glauber MC Nucleons are distributed randomly based on an appropriately chosen Woods-Saxon radial density, and polar coordinates are assigned arbitrarily.


Note: An internucleon separation can be introduced at this step Subsequently, only the $x$ and $y$ nucleon positions are relevant, so the nuclei can be thought of as 2 dimensional projections

## GlauBall Algorithm

The nuclei are offset by an impact parameter generated randomly from a linear distribution
Nucleons are treated as hard spheres. Their 2D projections are given an area of $\sigma_{\mathrm{NN}}$ (taken from pp inelastic collisions)


The nuclei are "thrown" (their x-y projections are overlapped), and opposing nucleons that touch are marked as participants.

Can we use the model to relate eccentricity to a well understood variable such as the number of participants?

## Eccentricity versus $\mathrm{N}_{\text {part }}$

## AuAu collisions with same $\mathrm{N}_{\text {part }}$

-Glauber collisions are modeled over a range of impact parameters and are sorted by the number of participants.
-An eccentricity distribution is built up for each $\mathrm{N}_{\text {part }}$


- The black line shows the average eccentricity
(which will be used later on)


## The Data

## PHOBOS has produced an extensive series of flow measurements probing multiple controlling parameters:

- Centrality
- Transverse Momentum
- Pseudorapidity
- Energy
- Species / System Size


## $\mathrm{V}_{2} \mathrm{VS} \eta$



Cu-Cu: S. Manly et al., (PHOBOS Collaboration) Proc. QM05, nucl-ex/0510031
Au+Au: B.B. Back et al., (PHOBOS Collaboration) PRL 94122303 (2005)

## $\mathrm{Cu}+\mathrm{Cu}$ about 20\% lower than $\mathrm{Au}+\mathrm{Au}$

## $\mathrm{v}_{2}$ vs $\mathrm{N}_{\text {part }}$ for Au and Cu



Au-Au: B.B. Back et al., (PHOBOS Collaboration), Phys.Rev. C72 (2005) 051901
Cu-Cu: S. Manly et al., (PHOBOS Collaboration), Proc. QM05, nucl-ex/0510031

## $\mathrm{v}_{2}$ vs $\mathrm{N}_{\text {part }}$ for Au and Cu



Au-Au: B.B. Back et al., (PHOBOS Collaboration), Phys.Rev. C72 (2005) 051901
Cu-Cu: S. Manly et al., (PHOBOS Collaboration), Proc. QM05, nucl-ex/0510031

## Normalized by the eccentricity

Standard Eccentricity Scaling


No agreement between Cu and Au scaled by the standard eccentricity

## Reexamining Eccentricity


-When we examine the eccentricity distribution for CuCu , it looks much broader than AuAu

- Also, notice that there are many more events with negative eccentricity.


## Previous studies of eccentricity fluctuations

Fluctuations in eccentricity have been studied before using Glauber MC.
Miller and Snellings suggested that eccentricity fluctuations might generate differences between the two particle correlation methods and higher order cumulant analyses.
M. Miller and R. Snellings, nucl-ex/0312008


In particular, negative eccentricity fluctuations contribute strongly to this difference

## Meaning of Negative Eccentricity



$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Here we revisit the standard definition of eccentricity applied to a Gluaber model.

## Meaning of Negative Eccentricity



$$
\varepsilon=\frac{\sigma_{y}^{2}-\sigma_{x}^{2}}{\sigma_{y}^{2}+\sigma_{x}^{2}}
$$

Here we revisit the standard definition of eccentricity applied to a Gluaber model.

Negative eccentricity results when $\sigma_{\mathrm{x}}^{2}>\sigma_{\mathrm{y}}^{2}$, apparently due to fluctuations in the positions of the nucleons.

Because of its smaller size, CuCu is more susceptible to fluctuations

## Redefining Eccentricity

One reasonable method is to realign the coordinate system to maximize the ellipsoidal shape (a principal axis transformation)


The eccentricity found in the rotated, participant coordinate system is denoted $\varepsilon_{\text {participant }}$

## Standard and Participant Eccentricity



Greater fluctuations in $\mathrm{Cu}+\mathrm{Cu}$. Positive fluctuations lead to non zero mean.
Pitores
RHIC AGS Users Meeting, BNL, June 5, 2006
Richard Bindel, U. of Maryland

## Robustness of Geometry Variables

- Distance of closest approach between nucleons
little change from 0 fm , to 0.4 fm , all the way up to 0.8 fm
- Skin depth
modified within reason, and all the way down to zero for fun
- Nucleon-nucleon cross section at $\sqrt{S}=200 \mathrm{GeV}$
from 35 mb to 45 mb
- Nuclear radius
deviated $\pm 10 \%$ from the nominal values
$\varepsilon_{\text {participant }}$ even slightly more robust than $\varepsilon_{\text {standard }}$


## Impact of Eccentricity Fluctuations

## Fluctuations in eccentricity are important for the $\mathbf{C u}-\mathbf{C u}$ system.



Must use care in doing Au-Au to Cu-Cu flow comparisons.
Eccentricity scaling depends on definition of eccentricity.

## Elliptic Flow Puzzle Solved?

Standard Eccentricity Scaling Participant Eccentricity Scaling


## <dN/dy> / <S> scaling

G. Roland et al., Proc. QM2005, nucl-ex/0510042


## Conclusions

- Flow in $\mathrm{Cu}+\mathrm{Cu}$ is found to be larger than initially anticipated, and it is not vanishingly small for the most central events.
- We encourage careful consideration of the definition of eccentricity. Particularly in the case of Glauber Monte Carlo calculations, we suggest that the participant eccentricity may be the relevant variable.
- When expressed in terms of participant eccentricity, $\mathrm{v}_{2} / \varepsilon$ is consistent for $\mathrm{Cu}+\mathrm{Cu}$ and $\mathrm{Au}+\mathrm{Au}$, and scales with other elliptic flow measurements at AGS, SPS, and RHIC energies.


## Backup Slides

## Glauber Parameters Changed

Systematic Source
Nucleon-nucleon cross-section

Standard
42 mb (for 200 GeV )

Nuclear skin depth
Nuclear radius
$0.535 \mathrm{fm}(\mathrm{Au})$
$0.596 \mathrm{fm}(\mathrm{Cu})$
$6.38 \mathrm{fm}(\mathrm{Au}) \quad 4.2 \mathrm{fm}(\mathrm{Cu})$
Minimum nucleon separation (center-to-center)
0.4 fm (like HIJING)

How Much We Vary 30 mb ( $<20 \mathrm{GeV}$ ) 45 mb ( $>200 \mathrm{GeV}$ ) $\pm 10$ \% $\pm 10 \%$

0 fm 0.8 fm


H. DeVries, C.W. De Jager, C. DeVries, 1987

