Rapidity Dependence of Elliptic Flow at RHIC

S.J. Sanders, E. B. Johnson (U. Kansas) for the BRAHMS Collaboration

Large azimuthal anisotropies are observed in particle production with respect to the reaction plane for non-central heavy-ion collisions (i.e., azimuthal flow) at RHIC. Elliptic flow is measured by the 2nd harmonic (v₂) coefficient of the Fourier expansion of the azimuthal distribution. The observed anisotropies and the measured v₂(p_t) values suggest an almost perfect fluid state is created, consistent with the production of a quark-gluon plasma. Most measurements of identified-particle v₂(p_t) behavior at RHIC have been done near mid-rapidity, although a strong pseudorapidity dependence is seen for the charged-hadron, p_t-integrated v₂ values[1]. Some theoretical progress has been made in understanding the dependence of the azimuthal flow on the longitudinal expansion of the system [2,3,4], but these studies have lacked good data on the rapidity dependent change in <p_t> and v₂(p_t) for different particle types. This talk will present new results of the BRAHMS experiment on π , K and p v₂(p_t) behavior at y \approx 0, 1, and 3. The associated spectra will also be presented to help disentangle the kinematic factors affecting the integral v₂ values. These results can be used to better define the longitudinal expansion of the medium created through heavy-ion reactions at RHIC energies.

[1] B.B. Back et al., PRL 94, 122303(2005).

[2] Ulrich Heintz and Peter Kolb, J. Phys. G 30, S1229 (2004).

[3] M. Csanad, T. Csorgo, and B. Lorstad, Nucl. Phys. A742, 80(2004).

[4] T. Hirano, private communication.