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Introduction

Fluctuations in various observables has been proposed as signatures of the
Quark–Gluon–Plasma. Here, the measure ωx, where x is either the charged
particle multiplicity Mch or summed deposited energy E, is explored in de-
tail.

Andrew Jackson once proposed the following analogy why fluctuation and
event–by–event analysis are of interest [1]:

Stick a sheet of paper out of your window on a rainy day. Keeping it
there for a long time — corresponding to averaging — the paper will
become uniformly wet and one would conclude that rain is a uniform
mist. If, however, one keeps the sheet of paper in the rain for a few
seconds only, one observes the striking droplet structure of rain.

One of the motivations for studying fluctuations, is the abrupt change in
the chiral order parameter

〈
ψ̄ψ
〉

as predicted by Lattice QCD (see Fig-
ure ). Such discontinuities in the order parameter are generally associated
with large density and energy density fluctuations [2], which one can hope
to observe in relativistic heavy–ion collisions.
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Figure 1: Lattice QCD calculations of energy density ε and pressure P
as a function of temperature T , with only two flavours of light
quarks (u and d quarks). The critical temperature Tc is here
≈ 150 MeV. Adapted from [3].

The ωx Fluctuation Measure

For a sample ofN events, where for each event one measuresNi, i = 1, . . . , N
times the variable xij, j = 1, . . . , Ni, we can define the average and squared
spread over all measurements over all events as

x ≡ 1∑N
i=1Ni

N∑
i=1

Ni∑
j=1

xij s2x ≡
1

Nt − 1

N∑
i=0

Ni∑
j=1

(
xij − x

)2
. (1)

If the measurement x is made up of contributions from many particles, like
for example total multiplicity M , total charged particle multiplicity Mch,
total charge C, net charge Q, or total transverse energy E⊥, so that only
one measurement of x is done in a single event, one can characterise the
fluctuations in x by the ω measure

ωx =
s2x
x

(2)

If x is measured in various bins of some other observable(s) o, like say pseudo
rapidity and polar angle (η, ϕ) and/or centrality, one can further define

ωx,oioj =
Cx,oi,oj√
xoixoj

(3)

where

Cx,oi,oj =
1

N

N∑
i

(xoi − xoi)
(
xoj − xoj

)
is the ijth entry of the covariance matrix C. For oi = oj (3) becomes

ωx,oi =
s2xo
xo

(4)

It is important to realise, that this measure is not an event–by–event mea-
sure, as it characterises the dispersion of the variable x over the full event
sample. However, the dispersion is of course related to the underlying phys-
ical event fluctuations, that produce the observable x.

The ωx measure was proposed by Baym, Blättel, Frankfurt, Heiselberg and
Strikman, and they have made various calculations of ωx, including vari-
ous production mechanism and smearing effects [4]. The measure has been
applied to experimental data by the wa98 collaboration [5–7] to Mch, mul-
tiplicity of γ-like particles, and total E⊥. The measure has also been ap-
plied to na49 data on Mch [8], and more recently by Jakobsen to brahms√
sNN = 130 GeV data on Mch [9].

Characteristics of ω

If the observable x is distributed according to a Poissonian probability func-
tion, it is trivial to see that the measure ωx becomes unity

ωx =
σ2

µ
= 1 .

Hence, if the observable x is trivially distributed, one would expect ωx ex-
actly equal to 1.

For a binomial distribution with probability p, the fluctuation become

ωx =
np(1− p)

np
= 1− p , (5)

where p is the probability of obtaining x successes out of n possible.

Consider N sources, each contributing with xi (e.g., some number of parti-
cles) to the measurement x, so that

x =

N∑
i=1

xi

If the number of sources and the xi of each source are independent, so that

x = Nxi ,

and if the sources are independent, so that xixj = xixj, i 6= j, we can write

ωx = ωxi + xiωN (6)

where ωxi is the fluctuation of the contribution for each source x, and ωN
is the fluctuation in the number of sources, where the averages and spreads
are taken over all sources and all events.

Fluctuations in Charged Particle Multiplicity — ωMch

Heiselberg [1] notes that the mean number of charged particles in pp collisions
can be parameterised as

〈Mch〉 = −4.2 + 4.69 (
√
sNN )0.31 , (7)

integrated over all rapidities, as shown in Figure 2(a). KNO scaling in in
high–energy (

√
s > 2 GeV) pp and pp̄ collisions, means that multiplicity

distributions scale with the average multiplicity. This in turn implies that all
moments of the charged particle multiplicity distribution, and in particular
the second moment, scale like

〈Mch
q〉 ∝ 〈Mch〉q .

Thus the fluctuations in Mch scale linearly with 〈Mch〉 as

ωMch
≈ 0.35

(〈Mch〉 − 1)2

〈Mch〉
for N+N collisions [1]. (8)
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Figure 2: (a) 〈Mch〉 parameterisation. (b) KNO scaling of ωMch
.

Adapted from [1].

This leads to a prediction of

〈Mch〉 = −4.2 + 4.69 · 2000.31 ≈ 20 (9)

ωMch
= 0.35

(20− 1)2

20
≈ 6.3 (10)

for N+N collisions at
√
sNN = 200 GeV, the current rhic energies.

Now, supposing that in a given collision, there are ni N+N collisions, labelled
by j, each producingmi,j charged particles, the sources are independent (un-
correlated), and the number of charged particles produced per N+N collision
is independent of the number of N+N collisions

Mchi =

ni∑
j=1

mi,j mimj = mimj Mch = mn ,

then we can write
ωMch

= ωm +mωn , (11)

where ωm is the fluctuation in charged particles from the individual N+N
collisions, and ωn is the fluctuations in the number of N+N collisions.

Using (11) it is possible, to separate out the contribution to ωMch
that stems

from sampling over a finite range of impact parameters. The point is, that
with decreasing b, more and more potential sources are available, but they
need not be utilised; hence ωn may be non–zero, but (11) allows separating
out this finite impact parameter resolution.

Using an estimate of ωm = 6.2 as explained above, and the measured multi-
plicities at

√
sNN = 200 GeV [10], one finds for the 5 % most central events

ωMch
= 6.2 +

1

2

4630

346
1.1 ≈ 13.6 , (12)

assuming full coverage in phase–space, for Au+Au collisions at
√
sNN =

200 GeV.

In the case that the particles are produced by a thermal source, where the
mean number of particles in bosonic mode a is

〈ma〉 =
1

e
Ea
T − 1

,

one finds [1] that the fluctuation in each state is given by

ωma = 1 + 〈ma〉 , (13)

so that the fluctuation in the total multiplicity M =
∑
ama becomes

ωM = 1 +

∑
a 〈ma〉2∑
a 〈ma〉

.

In [1] this is evaluated for a labelling momentum states of π± yielding

ωMπ
= r

1− r

1 + r
+ (1 + r)1.11 ≈ 1.4 ,

where r is the fraction of π± from resonance decays.

Assuming full coverage of phase space, the effect of finite impact parameter
resolution

ωMch
≈ 8.7 ,

for the 5 % most central events in Au+Au at
√
sNN = 200 GeV.

In the case of a phase transition to chiral symmetric and deconfined quark
matter, the fluctuations are expected to many orders of magnitude higher
than that from hadronic matter, whether the particle production is governed
by KNO scaling or thermal constraints [1]. Heisenberg also notes, that the if
the hadronisation of the quark matter is smooth it may very well wash out
the fluctuation signal all together.

Fluctuations in Deposited Energy — ωE

When a single detector element has an high occupancy the deposited en-
ergy in that detector will be a sum of the contributions from each particle
impinging on the detector.

For the ith event, assume that ni sources each produce mi,j particles in the
acceptance of a detector, or some bin in phase space, so that the total mul-
tiplicity and energy deposited in that detector becomes (i labels the event,
while j labels the source and k labels the produced particle)

Mchi =

ni∑
j

mi,j Ei =

Mchi∑
k

ek , (14)

where ej is the energy deposited by the jth particle. Following Section , one
finds that

Mch = nm E = Mche .

Again following Section , the fluctuation in E can be rewritten as

ωE =
s2E
E

= ωe +
E

Mch

(
ωm +

E

e

ωn
n

)
(15)

Here, ωe is the fluctuation in the energy deposited by a charged particle,
ωn is the fluctuation in the number of sources, n is the average number of
sources, and ωm is the fluctuation in the charged particle production at the
sources. In this way, we can express the measured ωE as a function of the
measured E with the interesting ωm as a parameter.

It is also worth noting, that ωe in principle absorbs all detector inefficien-
cies and quirks, and fluctuations due to fluctuations in the energy loss of
the charged particles impinging on the detector. However, using (15) it is
in principle possible to factor out these contributions to the measured fluc-
tuations in the summed energy deposited ωE, as long as the assumption of
E = Mche and holds. That may not be the case, if the detector is such that
it has a very long Landau tail in the energy spectrum, which will lead to a
very large spread, and may hence completely dominate in (15).

Fluctuations Energy Deposited in the SMA

Event Sample

A fine segmentation of 25 even sized bins in the η range [−2.5, 2.5] was used,
and 4 bins in ϕ. In centrality c, 13 bins with variable bin sizes were used.

The fluctuations is calculated in separate η, ϕ matrices for each defined
event class. The classification of events is done based on the centrality as
determined from the TMA.

Mch and E for a given η, ϕ, c bin is calculated as the acceptance corrected
sum of the Nη,ϕ,c contributions from detectors that are in that η, ϕ, c range.

Eη,ϕ,c ≡
Nη,ϕ,c∑
i

Ei
2π

∆ϕi∆ηi
sinϑi (16)

More than 10 000 000 events within the η and centrality criteria was used.
This gives a number of counts > 1 000 000 in each bin, satisfying the need
for a large statistical sample to validate the assumptions of the central limit
theorem.

Errors

The statistical error on ωx is given by:

s2ωx =
ω2
x

N

(ω=x

x
+ 4
)

. (17)

The systematic error, s2ωx,is obtained from the systematic error on x by
observing that for a constant a

ωax =
s2ax
ax

=

1

N − 1

∑
i

(axi − ax)2

1

N

∑
i

axi

=

a2 1

N − 1

∑
i

(xi − x)2

a
1

N

∑
i

xi

= aωx .

Thus, the systematic errors on ωMch
and ωE are the same as the systematic

errors on Mch and E.

Polar angle ϕ and Centrality c Dependence

As can be seen on Figure 3(a), ωE does not vary much over ϕ and hence the
rest of the analysis is carried out summing over the full range in ϕ.
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Figure 3: (a) ωE as a function of ϕ. (b) E as a function of c.

Figure 4 shows the measured fluctuations in deposited energy in the SMA.
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Figure 4: ωE as a function of η and c.

A more striking feature of the analysis, shown in Figure , is that ωE varies
very little with c. This is an indication that very little changes in the region
of c ∈ [0 %, 30 %], which approximately covers from full to half overlap of
the colliding nuclei.

ωE as a function of E

The equation

ωE = ωe +
E

Mch

(
ωm +

E

e

ωn
n

)
(15)

expresses the intrinsic fluctuations ωm in the particle production as a function
of the measurable quantities E, Mch and ωE with the parameters: fluctua-
tion in energy deposited per charged particle ωe, average deposited energy
per particle e, fluctuations in number of sources ωn and average number of
sources n. Since ωE changes very little over c ∈ [0 %, 30 %] and that E ∝ 1

c
in that range (see Figure 3(b)), one can plot ωE as a function of η and E
rather than the measured c. This is shown in Figure 5.
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Figure 5: ωE as a function of η and E

To evaluate ωm, the histogram in Figure 5 is sliced up along η, giving ωE as
a function of E for a given η. As Mch ∝ E, we can change (15) to read

ωE = ωe + E
ωm

Mch,0 + 1
eE

+ E
ωn
n

(18)

Each slice in η is fitted to the function

f (x) = p0 + x
p1

p2 + xp3
+ xp4 (19)

The result of these fits, along with the χ2 per degrees of freedom (NDF )
are shown in Figure 6 summarises the average, spread and χ2/NDF of Mch,

ωm, and ωn
ne from the fits.
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Figure 6: The χ2/NDF and parameters of Figure 5 fitted in each η bin
to (19). The average χ2/NDF is ≈ 1.1.

Note, that the relatively large value of ωe can be attributed to the integrating
nature of the SMA. In general, a charged particle deposit energy according
to a Landau distribution.

If, contrary to the assumption in Section , the number of particles produced
is anti–correlated with number sources, then the cross term.

Cn,m =
1

N

N∑
k

(nk − n) (mk −m) ,

may become negative. This means that the fluctuations will drop as the
number of source increases, or equivalently — the centrality falls. Then, the
average of the total multiplicity would become

Mch = mn + Cmn ,

and an additional terms would be present in (15), all proportional to Cmn
that is potentially negative. Hence, the assumption of independent particle
production of the sources, does not seem to hold.

Comparison to HIJING Data

A brag detector simulation can in principle be used to evaluate any uniden-
tifiable contributions to the fluctuations in particles produced per source ωm,
to obtain a bare ω′m by

ω′m = ωm
ωm,S
ωm,V

. (20)

However, as stressed in that section, this interpretation of ω′m is highly model
dependent.

Figure 7 shows the result of applying (20) (where the ratio is that in obtained
from simulations) to ωm from Figure 6.
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Figure 7: ωm (from Figure 6) adjusted for secondary particle production,
geometrical and detector acceptance, as well as other uniden-
tifiable sources of fluctuations.

As can be seen from Figure 7 the bare fluctuations are, averaged over η,
4.3± 0.3 at with a rather poor χ2/NDF of 1.7.

The main cause of errors in the figure, is the error on ωm in Figure 6. The
fact that it is not as smooth as one may have hoped shows up again in the
bare ωm, and is the main reason why the constant fit is relatively poor.

Assuming that the model calculations are sound, the value of η, 4.3± 0.3 is
far above the Poissonian value of 1, and in between the value of 6.3 expected
from KNO scaling at

√
sNN = 200 GeV, and the value of 1.4 from a thermal

source (see also Figure 2(b)). Hence, the conclusion of the analysis is, that
in terms of fluctuations, Au+Au collisions at relativistic energies behaves
much like scaled N+N collisions. However, the level is not high enough
to suggest that a transition to chiral symmetric and deconfined matter has
been achieved, which would most probably result in fluctuations orders of
magnitude higher [1].
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