The p/ π ratio p_T -dependence in the RHIC range of baryo-chemical potential

Natalia Katryńska^a for the BRAHMS Collaboration

^aSmoluchowski Institute of Physics, Jagiellonian University Krakow, 30-059, Poland, *n.katrynska@if.uj.edu.pl*

BRAHMS measurement of proton-to-pion ratios in Au+Au, Cu+Cu, p+p at $\sqrt{s_{NN}} = 62.4$ GeV and $\sqrt{s_{NN}} = 200$ GeV will be presented as a function of transverse momentum and collision centrality within the rapidity range $0 \le y \le 3$. The baryo-chemical potential, μ_B , for the indicated data spans from $\mu_B \approx 25$ MeV ($\sqrt{s_{NN}} = 200$ GeV, y = 0) to $\mu_B \approx 260$ MeV ($\sqrt{s_{NN}} = 62.4$ GeV, $y \approx 3$) [1]. The theoretical and experimental studies of the phase diagram in the $T(\mu_B)$ plane suggest that the gap between the temperature of the transition from the hadronic to the partonic phase, T_c , and temperature of chemical freeze-out increases with increasing μ_B . It was found [2] that at midrapidity region parton recombination model [3] provides a good description of p/π^+ ratios whereas the hydrodynamic model [4] fails in describing the shape of $p/\pi(p_T)$. However, for larger values of μ_B the pure recombination picture might be spoiled by the expected growth of the final-state hadron interaction. Eventually, this will lead to the behaviour reckoned for the expanding gas of hadrons. Comparison of the measured p/π ratios at different beam energies and rapidities with theoretical models [3,4,5] will allow to verify the above picture leading to better understanding of basic features of the phase diagram of strongly interacting matter.

References

- [1] I. Arsene, Quark Matter Conference 2006, Shanghai, China, November 14-22, 2006.
- [2] E. J. Kim, Quark Matter Conference 2005, Budapest, Hungary, August 4-9, 2005.
- [3] R. C. Hwa and C. B. Yang, *Phys. Rev. C*, **70**, (2004) 024905.
- [4] T. Hirano and Y. Nara, *Phys. Rev. C*, **69**, (2004) 034908.
- [5] W. Broniowski, B. Biedroń, *Phys. Rev. C*, **75**, (2007) 054905.