The BRahms Analysis Toolkit





Overview


The BRahms Analysis Toolkit (BRAT) is the analysis framework developed for analysis of BRAHMS data from RHIC.  It is written in C++ and runs with the ROOT system developed for NA49 and used in the same spirit by the PHOBOS experiment and forseen to be used by all RHIC experiments at some stage in their analysis.


BRAHMS Data Flow


From Flemming


BRAT Classes


BRAT has the following types of classes


Event Classes


Module Classes


Analysis Module Classes


Container Classes


These classes hold BRAT objects that are created in the course of analysis


BRAT Modules


In order to ease the complexity of data analysis, the concept of Analysis Modules as well as Analysis Module containers has been introduced.  A BRAT analysis module is a class that inherits from a BRAT base analysis module, namely BrModule





Inserting a new BRAT module.


To simplify things, we assume for the moment that we are adding a BRAT module to a directory where an infrastructure is already set up.  By that it is meant that the directory already exists in the repository, the directory tree is setup and supporting makefiles and include files already exist.  Two main files are necessary for inserting a new BRAT module in a directory that already exists.  These are the program file and the include file.  The programming standards for both of these files are discussed below.  If we are adding module xxxxx, the two filenames would be 


Brxxxxx.cxx


Brxxxxx.h





Brxxxxx.cxx has the following structure:


#include “Brxxxxx.h”


//other necessary include files.


ClassImp(Brxxxxx)


Brxxxxx::Brxxxxx():BrModule() {


//default contructor (usually used only by ROOT I/O)


//all necessary things for the default constructor


//that includes, but is not limited to, setting all pointers to NULL


}


Brxxxxx::Brxxxxx(Char_t Name, Char_t Title, type1 arg1,type2 arg2….): BrModule(Name,Title) {


//all necessary things that must be set up in the constructor


}


Brxxxx::~Brxxxx() {


//destructor


//all necessary things that must be deleted in the destructor


//this is usually objects that have been created in the course of this module.


//any objects that have been created in the course of the modue must be deleted here.  //Failure to do so will result in a memory leak.  In addition it is also necessary to protect //against pointers not having been setup.


}


.


.


.


All necessary methods that do not have a trivial operation done in the include file.


End of module





Brxxxxx.h has the following structure.


#ifndef _BRXXXXX_H


#define _BRXXXXX_H





#include “BrModule.h”





class Brxxxxx : public BrModule {


public:


   Brxxxxx();	//default constructor


   Brxxxxx(Char_t Name, Char_t Title, type1 arg1, type2 arg2…);


   virtual void SetFloatMember1(Float_t x) {fFloatMember = x;}


   virtual void SetIntMember(Int_t i) {fIntMember = i;)





   virtual Float_t GetFloatMember() {return fFloatMember;}


   virtual Int_t    GetIntMember()     {return fIntMember;}





private:


   Float_t fFloatMember;


   Int_t    fIntMember;





public:


// This next statement must be public and must be the last statement in the class.  Also 


// note the lack of a semicolon at the end of the statement.


   ClassDef(Brxxxx,1)		//Brxxxx template


};


#endif





BRAT module programming standards


Modules


The module names all begin with Br.  The convention is Brxxxxx where xxxxx is some descriptive name.  For example if we are to create a 3d point class, the suggested name would be BrPoint3D


Objects


The names of all BRAT objects begin with Br


All data members are private


Data members begin with f and include some type of descriptive name.  For example, if a data member is a 3d point in space, a good name would be fPoint.


Data members are set with SetDataMember(Float_t x){fDataMember=x;}.  With the above example for fPoint, the set function would be               virtual void SetPoint(Float_t x) {fPoint = x;}


Data members are accessed with the GetDataMember(){return fDataMember;}.  With the above example for fPoint, the get function would be Float_t GetPoint() {return fPoint;}


Include files


The beginning of the include file must be protected against double includes.  This is done by using the #ifndef … statement.  For example, if there is an include file called BrPoint3D.h, the first two lines of the file would be 


#ifndef _BRPOINT3D_H


#define _BRPOINT3D_H


.


.


.


and the last line would be 


#endif


As many include files as necessary for the particular module should themselves be included in the include file.  The reason for this is to make the include file more or less standalone.  If one includes a particular include file, it should not be necessary to include another file to get the program to compile








Using BRAT


There are two main ways to use the components of the BRAHMS Analysis Toolkit.  One way is to use from a ROOT macro with the C interpreter (cint).  The other way is to use from a compiled program.  The code that must be generated is not very different in using the two ways.  The only main difference is in the beginning and even that difference can be eliminated with proper #if statements.





Running BRAT objects from cint is envisioned to be used to do quick tests with modules in the debugging stage of the analysis.  The advantage to this is that changes can be made easily and no compilation is needed.  Once these modules are debugged and go into a production mode, it is envisioned that the small number (or none) of changes needed will be made and the program will be compiled and run.





Running from a ROOT Macro


The structure of the ROOT macro is the following


{


gROOT->Reset();


.


.


.


//All statements you wish to do


}





Running from a Compiled program





