The Brahms Analysis Toolkit

Overview

The BRahms Analysis Toolkit (BRAT) is the analysis framework developed for analysis of BRAHMS data from RHIC. It is written in C++ and runs with the ROOT�xe "ROOT"� system developed for NA49 and used in the same spirit by the PHOBOS experiment and foreseen to be used by all RHIC experiments at some stage in their analysis. The analysis framework consists of a set of shared libraries that can be dynamically loaded into ROOT.

This manual begins with an overview of BRAHMS data flow. Using BRAT at the RHIC Computing Facility (RCF) is then discussed. This section begins with the easiest possible case of using BRAT, namely using programs that already exist to do some type of analysis. We then progress to the next stage of complexity in which one wishes to do some type of analysis for which an analysis module does not yet exist. The next section therefore describes in detail how to generate an analysis module to do a “new” type of analysis. The next sections begin to go into detail about the internals of BRAT. The BRAHMS event data and objects are described as well as programming standards we have adopted. The procedure for installing BRAT on a UNIX workstation as well as an NT Workstation is described toward the end.

BRAHMS Data Flow

Data occurs from many stages. Due to efficiency in accessing and the desire and need not to duplicate data, they will have to exist in different files, part of the data possibly (event tags or run tags) in an Obj-y database. This will minimize duplication of data. Later analysis stages can thus proceed fairly efficient as far the 'right' data are defined and kept for the later analysis stages in the same files.

The analysis stages envisioned are

Simulated Event Generator Data e.g. Fritiof7.02, Venus.

Generation of digitized data. This can happen in two distinct ways.

GBRAHMS simulations will generate hit data from the event generator data using a detailed description of the detectors. This step will also generate digitized data in a slow or fast mode for the detectors.

DAQ will generate raw data i.e. the data as will be written from the DAQ front end. It may be that another raw data format relating to the DAQ but created in simulations exists.

Generation of Calibration database from raw or digitized data.

Reconstruction, which logically includes generation of calibrated data (intermediate results) local tracks, tracks, and Particle ID, as well as global information

Generation of Reconstructed Data Objects (RDO)

Creation of Physics Data Sets (PhDS) [run, software & hardware trigger selection]

Generation of acceptance and correction database.

Analysis of data using PhDS.

Each of these stages and the data they generated are discussed in more detail in the following sections.

���������������

Production of Event generator data

	This includes running event generators like Fritiof, Venus, and others. At present the output format is Zebra based. It can be used in the GBRAHMS program, and in stand-alone programs for looking at expected physics distributions. It is worth to remember that the open model standard proposed by Y.Pang keep the event generator output as ASCII formatted files. We could change our Geant and analysis model to be able to read this. Maybe others (Longacre) have already done this for STAR? It is though put at a low priority since a working scheme does exist.

GBRAHMS simulations

This stage takes the data from the event generators and creates events with hits and track information for active detectors. The data are generated from GBRAHMS and are presently written as c-stream files (flat files). The underlying data structures are table like i.e. a collection of structures.

gtracks : Track parameters

ghits : Hits in detectors

gvolume : Geant geometry information

This step is quite time consuming using 1-4 minutes per Au Au event depending very much on centrality and angle settings.

DAQ and Online Stage

Raw data from the DAQ which can be in 3 different forms

- translated

- un translated

- pedestal or non-pedestal subtracted data.

Raw data from digitization routines. These will be like raw data, but in addition there will be relations data structures correlating digitized data with simulated hits. These relations or associations should be in separate data structures.

It may turn out to be useful to have a level 0 conversion from a compact raw data format to the first level of digitized data in e.g. ROOT structures. Thus the raw data format are different from the digitized information presented to the first analysis modules. In this case a special module must be called to convert raw data into digitized data. This would possibly also help in having the raw data in a more compact format.

Data Calibration

Calibration data (for the calibration database) first have to be generated. Hopefully much of this can be accomplished in near-real time. The second best choice is to have calibration performed during the first step of reconstruction by first executing the calibration pass on the raw data files read from HPSS storage.

Data reconstruction

The first step is Raw-> calibrated data. This requires access to a database with calibration constants, and might additionally include simple clustering of tracking hits. Depending on the CPU needs these data could be short-lived, or persistent. The choice may depend on the need to go back to raw data in subsequent analysis.

Event reconstruction is a second step of data reconstruction. This will involve local and global tracks from the spectrometers. Most of the particle identification should be performed in this stage. It is not obvious that it can be completed. E.g. it is necessary to have the knowledge of tracks to obtain the 'final' time calibration of TOF walls before PID. At the minimum first order calibration and PID should be archived in this stage.

The data objects stored persistently comes in several classes.

Hits on tracking detectors; track to hit associations.

Local tracks in tracking stations

Track matching

Global spectrometer tracks

PID information

Multiplicity information, vertex information

Physics tracks

In the MDC these will be on a single output file (root file). In the production mode we will like to split these to produce RDO files from which Physics Data Sets can be extracted efficiently by run and trigger selection, and the more voluminous output of hits, associations, calibrated data. In production mode it is likely that these will only have to be stored for a smaller subset of data (10-15%).

Certainly early on but also later it may be needed to re-run part of reconstruction to get proper particle identification. Another possibility may be depending on i/o versus cpu needs to have standard modules included in the subsequent PhDS generation.

Physics Data Set generation

This data pass will select from the large sample of Reconstructed Data Objects those that can be used in specific physics analyses. Such sets can e.g. consists of

Specific particle kinds and trigger selection for many angle settings

Detailed global information (multiplicity, beam-beam counter).

Two-particle data from a large number of data files.

Calculation of tight multiplicity cuts to select out very central events.

These runs can be selected based on the information in the run database as well as from the event header summary (event tag file, run summary on disk). These selection tasks have to be coordinated to get reasonable access to the HPSS file system and transfer speed. This will most likely be done using the ROOT frame work; maybe using a PROOF like system if the same files are used extensively by multiple analysis/ data set generations.

Analysis of Physics Data Sets.

Some of this analysis will be done at RCF, but a significant fraction will be done at the collaborators home institutions.

Using BRAT at the RCF

There are several different levels of BRAT usage. These can range from simply using what already exists to writing and implementing new analysis modules using tables that already exist to writing and implementing new analysis modules that generate new tables. The following descriptions will range in complexity starting with the simplest cases and progressively going to more complicated cases.

Starting BRAT

In all cases, BRAT must be started. The proper environment variables must be set. These include ROOTSYS for ROOT, BRATSYS and BRATHOME. If you have the entire distribution of BRAT, BRATSYS and BRATHOME are the same. The time BRATSYS and BRATHOME would be different is when one is working with only part of the BRAT distribution. BRATHOME would point to the directory which contains the part of BRAT in the users directory whereas BRATSYS would point to the rest of the BRAT system. This is currently envisioned to be /brahms/u/brahmlib/brat at the RCF.

The LD_LIBRARY_PATH environment variable must also be set to point to the directory where the shared libraries exist. This variable will usually be /brahms/u/brahmlib/brat/lib/$BRAHMS_ARCH, or $BRATSYS/lib/$BRAHMS_ARCH

Paths to appropriate compilers and compiler run time libraries must also be set. Failure to do so can cause undefined behavior and has been a source of confusion in the past. It is also a good idea for stability to insure that ROOT was compiled and linked with the same compiler as is being used to compile and link the BRAT shared libraries.

It is also necessary to put in the appropriate .rootrc, and rootlogon.C macro . The first, .rootrc sets ROOT environment variables, namely in our case, the path to the shared libraries as well as a multitude of other things. The rootlogon.C macro executes the commands inside the file when ROOT is started. It should be noted that the file that is executed at ROOT startup can be any file. The file executed is set in the .rootrc file. We find rootlogon.C to be a good choice.

Using what is already there

Using modules that already exist consists of setting the environment variables as described above and then simply getting into ROOT and loading the shared libraries in the $BRATSYS/lib/$BRAHMS_ARCH directory. The procedure for dynamically loading the shared libraries is the following:

 gSystem->Load("libBrat_Base.so");

 gSystem->Load("libBrat_IO.so");

 gSystem->Load("libBrat_Geant.so");

 gSystem->Load("libBrat_Tof.so");

 gSystem->Load("libBrat_TRACK.so");

 gSystem->Load("libBrat_TPC.so");

 gSystem->Load("libBrat_DC.so");

Typically what happens is that these commands are put into a C++ macro and then executed. This automates the procedure.

After this is done, one would simply begin typing in appropriate commands (C++ commands) or executing (more likely) appropriate macros.

Generating a new analysis module

1) Define the interface in the file ana/inc/BrAnaXXX.h

//Put CVS revision strings at the top of the file

 // Id

 //

 // Log

 //

//Protect against multiple includes

#ifndef __BRANAXXX_H

#define __BRANAXXX_H

 :

 :

//Add definition or declaration of classes and types that will be used.

//Use a declaration (to save time) if you only use pointers to a class

//and do not need the definition of the class itself.

 class ZZZ;

//Use an include file if you need the definition, but check if the

//file has already been included.

#ifndef __BRYYY_H

#include "BrYYY.h"

#endif

//Define the class, inherit from BrModule

class BrAnaXXX : public BrModule {

//Make copy constructor and assignment operator private (to prevent the

//user from copying or assigning to an analysis modules).

 BrAnaXXX(const BrAnaXXX&);

 void operator=(const BrAnaXXX&);

//Declare constructors, destructor and the other public methods (at //least Define Histograms, Event and Info)

 public:

 BrAnaXXX();

 BrAnaXXX(Text_t *Name, Char_t *Title);

 virtual ~BrAnaXXX();

 virtual void DefineHistograms();

 virtual void Event(BrEventNode*, BrEventNode*);

 virtual void Info() const;

 .

 .

 .

//Declare the private data members (at least a directory for the histograms) //Be sure to use the ROOT Classdef macro as the last line of the class //definition. It must be in the public section. Use version number 0 since //analysis module objects will not be written to file. Note that there is no //semicolon at the end of the ClassDef(BrAnaXXX,0) statement.

private:

 TDirectory* hdir; // Histogram directory

 TH1F* hxxx; // xxx histogram (1D)

public:

 ClassDef(BrAnaXXX,0) // BRAHMS analysis module for XXX

// End of the class definition

 };

//End of include protection

#endif

2) Implement the methods in the file ana/src/BrAnaXXX.cxx

Put CVS revision strings at the top of the file

 // Id

 //

 // Log

 //

//Add a comment containing the name of the module and a description of the //module. This will be used by the documentation features of ROOT.

///

// //

// BrAnaXXX //

// //

// BrAnaXXX is an analysis module for ... //

// //

///

//Include the declarations and definitions needed.

#include "TDirectory.h"

#include "BrAnaXXX.h"

#include "YYY.h"

// Use the ROOT ClassImp macro. Note that there is no semicolon after)

ClassImp(BrAnaXXX)

// Add definitions for the methods declared in the include file

//---

BrAnaXXX::BrAnaXXX() {

// default constructor (initialize all pointers to 0)

hdir = 0;

}

//---

BrAnaXXX::BrAnaXXX(Text_t *Name, Char_t *Title) : BrModule(Name, Title) {

// constructor for named object (initialize all pointers to 0)

hdir = 0;

}

//---

BrAnaXXX::~BrAnaXXX(){

// destructor

// Do not delete the histograms. ROOT deletes them later on.

}

//---

void BrAnaXXX::DefineHistograms(){

// Book the histograms (called from BrModule::Book)

if (hdir) {

 Warning("DefineHistograms","Histograms are already defined.");

 return;

 }

// Remember current directory

TDirectory* savdir = gDirectory;

// Create a new subdirectory (named after object) for the histograms

hdir = gDirectory->mkdir(GetName());

if (!hdir) {

 Warning("DefineHistograms","Could not create histogram directory.");

 return;

 }

// Change to histogram directory

hdir->cd();

// Book histograms

hxxx = new TH1F(name, title, nbins, low, up);

// Restore current directory

savdir->cd();

}

//---

void BrAnaXXX::Event(BrEventNode* event, BrEventNode*)

{

// Analyse one event

if (!hdir) {

 Warning("Event","No histograms defined.");

 return;

 }

// Remember current directory and go to histogram directory

TDirectory* savdir = gDirectory;

hdir->cd();

// Look at the data and fill the histograms

// Restore current directory

savdir->cd();

}

//---

void BrAnaXXX::Info() const{

// Print information about the module

BrModule::Info(); // prints class, name and title

cout << "*\n";

cout << "* Ver. : Id\n"; // prints version

cout << "*\n";

cout << "* An analysis module for ...\n";

cout << "**\n";

cout << flush;

}

3) Make the module available to ROOT

 a) Edit ana/inc/BrAna_LinkDef.h to add a line

 #pragma link C++ class BrAnaXXX

 down in the section where there are similar statements

 b) Edit ana/inc/LinkDefBratAnaINC.h to add a line

 #include "BrAnaXXX.h"

4) Edit ana/src/Makefile

In definition of OBJECTS, add a line (before

 Brat$(PROG)Cint.$(ObjSuf)!!!) BrAnaXXX.$(ObjSuf) \

In definition of INCFILES, add a line

 (before $(INCDIR)/LinkDefBrat$(PROG)INC.h!!!)

 $(INCDIR)/BrAnaXXX.h \

 c) If necessary, add $(BRATHOME)/xxx/inc to declarations of vpath

 d) Among the dependencies, add a line

 BrAnaXXX.$(SrcSuf): BrAnaXXX.h (plus any other include files used

 in definition)

5) Recompile the library of analysis modules

 a) Go to the ana/src directory

 b) Give the command (g)make

Generating a new table to use in a new analysis module

BRAT Classes

BRAT has the following types of classes

Event Classes

Module Classes

Analysis Module Classes

Container Classes

These classes hold BRAT objects that are created in the course of analysis

BRAT Modules

In order to ease the complexity of data analysis, the concept of Analysis Modules as well as Analysis Module containers has been introduced. A BRAT analysis module is a class that inherits from a BRAT base analysis module, namely BrModule

Inserting a new BRAT module.

To simplify things, we assume for the moment that we are adding a BRAT module to a directory where an infrastructure is already set up. By that it is meant that the directory already exists in the repository, the directory tree is setup and supporting makefiles and include files already exist. Two main files are necessary for inserting a new BRAT module in a directory that already exists. These are the program file and the include file. The programming standards for both of these files are discussed below. If we were adding module XxModule, the two filenames would be

BrXxModule.cxx

BrXxModule.h

BrXxModule.cxx has the following structure:

#include "BrXxModule.h"

//other necessary include files.

ClassImp(BrxxModule)

BrxxModule::BrXxModule():BrModule() {

//default constructor (usually used only by ROOT I/O)

//all necessary things for the default constructor

//that includes, but is not limited to, setting all pointers to NULL

}

BrXxModule::BrXxModule(Char_t* Name, Char_t* Title, type1 arg1,type2 arg2….): BrModule(Name,Title) {

//all necessary things that must be set up in the constructor

// including comments describing the class, and assumptions. The comments

// following the declaration of the method will be included in the automatic

// HTML documentation.

}

BrXxModule::~BrXxModule() {

//destructor

//all necessary things that must be deleted in the destructor

//this is usually objects that have been created in the course of this module.

//any objects that have been created in the course of the module must be deleted

// here. Failure to do so will result in a memory leak. In addition it is also

// necessary to protect against pointers not having been setup.

}

.

.

.

All necessary methods that do not have a trivial operation done in the include file.

End of module

BrxxModule.h has the following structure.

#ifndef _BRXXMODULE_H

#define _BRXXMODULE_H

#include "BrModule.h"

class BrXxModule : public BrModule {

public:

 BrxxModule();	//default constructor

 BrxxModule(Char_t* Name, Char_t* Title, type1 arg1, type2 arg2…);

 Virtual ~BrXxModule();

 virtual void SetFloatMember1(Float_t x) {fFloatMember = x;}

 virtual void SetIntMember(Int_t i) {fIntMember = i;)

 virtual Float_t GetFloatMember() {return fFloatMember;}

 virtual Int_t GetIntMember() {return fIntMember;}

private:

 Float_t fFloatMember; // Floating data

 Int_t fIntMember; // Integer data

public:

// This next statement must be the last statement in // the class. Also // note the lack of a semicolon at the end of the

// statement. (It is a macro)

 ClassDef(BrXxModule,1)		// BrxxModule template

};

#endif

BRAT event data and Objects.

The fundamental object is defined as BrDataObject�xe "BrDataObject"�. All other event objects are derived from these. Since it is not known at this stage (summer 98) what objects are needed it was decided to design a logical structure that is flexible, expandable and built on the Root framework. It still resembles in many ways a traditional 'bank' structure. Event objects are organized in directory like structures. This is illustrated in the figure below. The basic properties of an dataobject

It has a name and can be referred to by it.

It is by default considered persistent i.e. it will be written if a tree it belongs to ,i.e. an event node is requested to be transferred (through an BrIOModule)

It can be an event node.

��

This is an example of the tree structure. Each BrEventNode�xe "BrEventNode"� contains a list of data object that can be simple, a table or another event node. This way complicated directory like structures can be build. A data object is identified by a name.

Example 1:

How to find a event object (BrDataObject�xe "BrDataObject"�) and access data members.

BrDataTable* bbdiglist;

bbdiglist = digitized_data->GetDataTable("DigBB left");

if(bbdiglist != NULL){

 int numhits = bbdiglist->Entries();

For(ihit=0; ihits < numhits; ihit++)

{

// this is the most general way using the ROOT access methods.

	BrDigBB* Digbb_p= (BrDigBB*) digbblist->At(ihit);

BRAT programming standards and conventions

Many people will maintain the BRAHMS software. It is important to keep a reasonable consistency in the way code is written. This is particular true for the class definitions (i.e. header files) which will be read many times. This subject can lead to an endless discussion. In order to achieve uniformity in the coding of the Brahms software we have tried in the early implementation to follow recommendation developed by many other people. It should also be remembered that software is written once but read many times by other people so it is important to spend some time on these issues.

Some recommendation include

Use the ROOT conventions wherever possible; see the ROOT documentation.

Use other sensible guidelines e.g. as provided by Taligent, B.Stroustrup and J.Lakos

Data types

The definitions of intrinsic C++ data types are not machine independent. Therefore the ROOT�xe "ROOT"� documentation recommends the use of the typedef defined types listed in the table below.

Root Types�ODMG type�Definition��Char_t�d_Char�8 bit ASCII��Uchar_t�d_Octet�8 bit no interpretation��Short_t�d_Short�16 bit signed��Ushort_t�d_Ushort�16 bit, unsigned��Int_t�d_Long�32 bit, signed��Uint_t�d_Ulong�32 bit, unsigned��Float_t�d_Float�32 bit, IEEE��Double_t�d_Double�64 bit, IEEE��Long_t�-�64 bit, integer��Ulong_t�-�64 bit unsigned integer��

Note these type do map well onto the ODMG types in types, though not in names. This should make use of an Object oriented database fairly simple. For local variables one can use intrinsic types. The important point is that all data in structures can be persistent in one way or another, or for which a specific behavior is expected one better stick to the ROOT and ODMG types.

Modules

i	The module names all begin with Br. The convention is Brxxxxx where xxxxx is some descriptive name. For example if we are to create a 3d vector class, the suggested name would be BrVector3D

Objects

i	The names of all BRAT objects begin with Br

ii	All data members are private

iii	Data members begin with f and include some type of descriptive name. For example, if a data member is a 3d vector in space, a good name would be fPoint. Data members start with f<name> in the ROOT style. It is further proposed that data members that are of pointer type end in _p to indicate functionality and enhance readability

iv	Data members are set with SetDataMember(Float_t x){fDataMember=x;}. With the above example for fPoint, the set function would be virtual void SetVector(Float_t x) {fPoint = x;}

v	Data members are accessed with the GetDataMember(){return fDataMember;}. With the above example for fPoint, the get function would be Float_t GetPoint() {return fPoint;}

Include files

i	The beginning of the include file must be protected against double includes. This is done by using the #ifndef … statement. For example, if there is an include file called BrPoint3D.h, the first two lines of the file would be

	#ifndef _BRVECTOR3D_H

	#define _BRVECTOR3D_H

	.

	.

	.

	and the last line would be

	#endif

ii	As many include files as necessary for the particular module should themselves be included in the include file. The reason for this is to make the include file more or less standalone. If one includes a particular include file, it should not be necessary to include another file to get the program to compile

iii	Included files included inside a header file should have a trivial additional protection of same kind. This will provide for a faster compilation since fewer files have to be opened and read.

 #ifndef _BRMODULE_H

 #include "BrModule.h"

 #endif

Naming conventions. (DataBanks)

A scheme, which uniquely identifies databanks (or rather event/data objects), must be developed. At present the following kind of names has been proposed. The obvious idea is that the first part of the name is associated with a given kind of data structures and the second identifies one of several instances

Geant Hits and tracks

"GeantHits <Detector>" where detector is the name of the Geant3 hit set/volume. E.g. "GeantHits T1" or "GeantHits TOF1".

Digitized data for Tof: "DigTof TOF1 ".

Using BRAT

There are two main ways to use the components of the BRAHMS Analysis Toolkit. One way is to use from a ROOT macro with the C interpreter (cint). The other way is to use from a compiled program. The code that must be generated is not very different in using the two ways. The only main difference is in the beginning and even that difference can be eliminated with proper #if statements.

Running BRAT objects from CINT is envisioned to be used to do quick tests with modules in the debugging stage of the analysis. The advantage to this is that changes can be made easily and no compilation is needed. Once these modules are debugged and go into a production mode, it is envisioned that the small number (or none) of changes needed will be made and the program will be compiled and run.

Running from a ROOT Macro

The structure of the ROOT macro is the following

{

gROOT->Reset();

.

.

.

//All statements you wish to do

}

Running from a Compiled program

The structure of running from a compiled program is the following.

#include <stdlib.h>

#include <string.h>

#include "TROOT.h"

//other necessary include files

.

.

.

int main(int argc, char **argv)

{

 TROOT brat("brat","BRahms Analysis Toolkit");

//all statements you wish to do

.

.

.

}

It can be easily seen that the main differences between the C++ macro and the compiled program is the include files, the main(….) at the beginning and the TROOT statement. If one wishes to switch between compiling and executing the macro, one might consider the following file structure:

#ifndef _CINT_

#include <stdlib.h>

#include <string.h>

#include "TROOT.h"

//other necessary include files

.

.

.

int main(int argc, char **argv)

#endif

{

#ifndef _CINT_

 TROOT brat("brat","BRahms Analysis Toolkit");

#endif

//all statements you wish to do

.

.

.

}

CINT is a variable that is defined only if the program is being executed from ROOT as a ROOT macro. Therefore if it is defined, the includes which are done automatically by ROOT in the ROOT CINT environment would be skipped if executed as a macro. They would be compiled, however, if the program was being compiled.

Adding Events together

There are many instances, especially in simulations where it is useful to add two different events together. This has been simplified by overriding the +, += and = operators of the BrEventNode class. To give an example, if you have two geant events, say

BrEventNode *geantevent1,*geantevent2;

If two events have been read into geantevent1, and geantevent2, to get the sum, one would simply do:

BrEventNode geantevent_sum = *geantevent1 + *geantevent2;

Alternatively one could also do:

BrEventNode *geantevent_sum = new BrEventNode();

*geantevent_sum = *geantevent1 + *geantevent2;

Using Geometry classes to simplify analysis life

A number of geometry classes have been generated to clean up analysis code. Geometry is important for many applications in analysis including, but obviously not limited to, Global Track Matching and finding intersections of tracks with the hodoscopes, H1 and H2. The geometry classes generated so far are:

BrVector3D (is essentially 3 coordinates, x,y, and z; can be used for a point or vector)

BrLine3D (consists of two BrVector3D’s, one for the origin, one for the direction)

BrPlane3D

BrVector3D contains methods for many vector operations. BrPlane3D is very useful to help determine intersections of lines with planes. For example, if there is a track (represented with a BrLine3D by an origin and a direction) and one wants to find the intersection of this track with a plane, say the exit of a magnet, one would simply perform the following two operations:

BrPlane3D ExitPlane(0,0,d2l,0,1,d2l,1,0,d2l);//where d2l is the z position of the exit of D2

BrVector3D intersection = ExitPlane.GetIntersectionWithLine(trackline);

The variable intersection then contains the x,y,z position of the intersection of the plane and the track.

Installing BRAT on your own UNIX Workstation

BRAT runs under ROOT. If ROOT is not running, it must be installed. See instructions and download procedures at http://root.cern.ch

Download BRAT. If you are using the latest released tagged version (recommended), it should be downloaded from the RCF using the following steps

ftp into your account into the RCF (ftp rcf.rhic.bnl.gov; it will ask for your username and password)

bin

get ~brahmlib/brat/Brat-x-x.tar (where x-x is the tagged release, for example 1-1; to see what is available, type ls ~brahmlib/brat

Expand BRAT in your current directory

tar -xvf Brat-x-x.tar (where x-x is as above, eg 1-1)

Set environment variables for both ROOT and BRAT

The BRAHMS_ARCH environment variable must be set to one of the architectures supported by BRAT. These currently include

Architecture�value of BRAHMS_ARCH��Linux�linux��Intel Solaris�sun4os5pc��Sun Solaris�sun4os5��HP-UX�hp-ux��

The ROOTSYS environment variable must be set to the top level directory of ROOT. For example if ROOT resides in /brahms/u/anyuser/root, ROOTSYS must be set to /brahms/u/anyuser/root using the command setenv ROOTSYS /brahms/u/anyuser/root

BRATSYS must be set to the top level directory where BRAT resides

BRATHOME must be set to the same value if you are using the entire release of BRAT

Build BRAT

Get into the BRATHOME directory

Build the system using gnu-make. The command is typically make, but on some systems could be gmake. The way to check if you are using gnu-make is to type make -v or gmake -v. If you get information that has to do with Gnu along with a version number, it is gnu-make. If this command generates an error or gives version information about a product other than gnu-make, it is the wrong make and gnu-make needs to be installed.

Installing BRAT on NT

BRAT runs under ROOT. If ROOT is not running, it must be installed. See instructions and download procedures at http://root.cern.ch

ROOTSYS must be set to c:\\users\\root. The double slash is necessary for working with BRAT. In principle a single unix slash should work also, but that has not been tested.

The Cygnus Development Kit (cdk) needs to be installed. If it is already installed, you may skip the next several steps.

These steps assume you are downloading the beta-19 version. The steps should be similar if you are downloading a later version.

Download the cdk using the following steps

Activate your favorite browser

Go to www.cygnus.com/misc/gnu-win32

pick the ftp mirror site nearest your institution

download cdkb19.exe to your machine

Make a MS-DOS window

Change directory to the one where cdkb19.exe was downloaded to

execute cdkb19.exe

During the procedure it will ask where to put the software. I have found that the only way the software will work properly is if you put it into \Cygnus\B19

Once the procedure is completed, the following needs to be added to your path

C:\Cygnus\b19\H-i386-cygwin32\bin

C:\Cygnus\b19

Now to activate cygnus software, just type in Cygnus at the DOS prompt. Then you will have many UNIX commands. Also, once you get out of cygnus (using exit), many of the commands will remain activated. To have these commands activated, it is only necessary to get into Cygnus once per DOS session.

Continuing with BRAT with the assumption that Cygnus is installed.

Obtain a BRAT tar file. This should come from the BRAHMS CVS repository. To do that, execute the following steps

logon to the RCF

get an AFS token (klog; then type in your afs password)

cd to the place where you want to temporarily store brat, eg brat_cvs

cvs checkout brat

cvs release brat

tar -cvf brat.tar brat

transfer brat.tar in binary format to your NT machine.

tar -xvf brat.tar

Set BRATSYS and BRATHOME variables to the directory root where BRAT will reside. The difference between BRATSYS and BRATHOME is that BRATSYS is for system wide BRAT and BRATHOME is detector specific. This enables to develop parts of the system independently (BRATHOME) with the rest of the system being in some type of semi-permanent repository (BRATSYS). The following example assumes you are working with the whole system and that BRAT resides in D:\users\brat\brat.

BRATSYS = //D/users/brat/brat

BRATHOME = //D/users/brat/brat

Be sure MSVCC is installed.

Be sure C:\MSDEV\bin is included in your path. The installation procedure does not do that for you.

Set the include and lib variables to have the MSVCC stuff plus pointers to ROOT

include=c:\msdev\include;c:\msdev\mfc\include;%rootsys%\include

lib=c:\msdev\lib;c:\msdev\mfc\lib;c:\users\brat\brat\lib\WinNT. Using BRATSYS or BRATHOME here will not work because BRATSYS and BRATHOME are Unix style and NT (DOS) style is needed here. It should be noted that if BRATSYS and BRATHOME are not the same, both pointers must be put into the lib variable.

One must be sure that BRAT is being compiled using the same compiler that ROOT was compiled with. Strange errors can occur if that is not the case. If your compiler is not the same as the one ROOT was compiled with and it is not feasible to get the same compiler, it is necessary to recompile ROOT. That requires the following steps.

Download root.cmz for the version of ROOT you wish to compile.

Download CMZ from Cernlib

Get the proper CMZLOGON.kumac file to setup for ROOT

Get into CMZ

type Install (this will take some time)

Compile BRAT using make (from Cygnus)

�Index Table

�index \r \c "2" ��BrDataObject, 2, 3

BrEventNode, 3

ROOT, 1, 4

��

�PAGE �

�PAGE �21�

Ghits, Gtracks,..

Schematic view of Dataflow

Raw data

Physics Data Sets (PhDS)

Reconstructed Data Objects (RDO)

Digitization

Reconstruction

Data selection

GBRAHMSS

