Guide for Data Reconstruction and Calibration

Djamel Querdane
Niels Bohr Institute, Copenhagen
ouerdane@nbi.dk

April 16, 2002

Abstract

This humble guide is a summary of what I did for data reconstruction and
calibration. It gives some hints and explanations on calibration procedure and data
reconstruction. It covers mainly how I deal with global tracking, BB counters and
hodoscope calibrations.

i

Contents

C

Introduction

First Calibrations

2.1 Pedestal calibration oL

2.2 Second Calibrationso
2.2.1 Beam-Beam counter calibrationo 00,

2.2.2 Track matching offsetso Lo
Main Data Reconstruction

Hodoscope Calibration

41 TDC Gain o e
4.2 ADC Gain e
4.3 ADelay and Effective speed of light
4.4 Timeoffsets

4.5 Slewing correction L. L e
Final Reconstruction (PID and DSTs)

Database Connection

Hints on Reconstruction Production

Reconstruction of the FS data for TOF calibration

D Calibration check

List of Figures

Pedestal calibration for BB right array.
Single tube ADC distribution after gain calibration.
ATDC calibration. o
Slewing effect and fitting. Lo oL

BB vertex offsets for big tubes (top), small tubes (middle) and fastest tubes
(bottom).

Tt = W N =

Matching parameters versus run number.,

7 Matching parameter offsets for the MRS.

iii

15
15
15
16
17
19

19

21

22

23

26

10
11
12
13

Difference in X between track projections and valid hit positions in the

TOF reference frame. 14
Typical calibrated ADC. 16
ADelay and effective speed of light. 17
Effective speed of light versus Slat number in H1. 18
A typical time offset calibration. oL, 19
Revision check of Beam-Beam Left for run 5662. 26

v

1 Introduction

This guide is meant to help any member of the BRAHMS collaboration with data recon-
truction and offline detector calibration. The content deals mainly with what I personally
implemented for that matter in terms of procedures, software and usage. This guide can-
not obviously cover all aspects in every detail for two main reasons: the first one is simply
that my technical knowledge covers certain parts of the experiment but certainly not all;
the second one is that as I'm writing now, things change quickly (BRAT improves day
after day and changes can be sometimes very drastic). Nevertheless, I think the core of
this guide should remain fairly up to date within the next months.

Different topics are dicussed here. In order to make it easy for me and also for you, I'll
introduce the following sections in the order I process the data from the raw format to a
more useful one for physics analyses. Some of the steps will be mentioned quickly since
I was not personally involved, but I'll indicate whom to contact for more details. Last
but not least, there’s an appendix at the end of the guide with hints and tricks about
database connection, data reconstruction jobs, etc.

2 First Calibrations

The first, easiest and most trivial thing to do is the pedestal calibration. This should
be done before anything else. The way I do it requires that you can submit jobs as
bramreco. You should therefore have some knowledge about CRASH [1]. I assume it is
the case. Moreover, I'll assume that you know about bratmain, job configuration
scripts, database connections. This is all very well described in [2]. Finally, all
procedures described in this guide have been tested and are still being used on the rcas
machines, which leads to the final assumption that you work on these mahchines.

2.1 Pedestal calibration

Pick up the configuration script CrashPed.C in the subdirectory share/brat/scripts/calib/
of your brat installation directory. From wherever on any rcas machine, write the jsf file

(or job summary files) of the desired pedestal run (you can browse the DAQ run viewer

to quickly find pedestal runs, they are tagged PH and the web link is

http://pii3.brahms.bnl.gov/daq-cgi-bin/cgiTrigSummary.perl

Edit the script. Check the database connection section and change if needed (but the
default parameters should be ok, c¢f. Appendix A for database parameters). Go now to
the module section. The trigger filter should select only 7 and 8. Then come the
pedestal modules for all the hodoscopes, BB counters and Cherenkov detectors. Feel free
to add or remove whatever. Each of these modules has 2 very important methods:

1. SetSaveAscii(Bool_t)

2. SetCalibFile(const Char_tx*)

If you want to save the calibration to temporary ascii files (highly recommended), the 1st
method should always set kTRUE. The 2nd method should set the name of this ascii file.

Another method allows you to set an upper limit to the width of the evaluated pedestals.
If you think that the photo-multiplier tubes (PMT) should not have a pedestal width
bigger than this limit, the ones that turn out to be over this limit will be tagged as
kCalException (= -1111 internally). They will be ignored in subsequent analyses.

You only need to scan a sequence (pedestal runs normally have more than one sequence).
Check the histogram file. In Fig.1, you can see a typical calibration for the BB right array
(run 2476).

BBR Pedestals Run 2476

200—
180
160 |m
140
120E 20 BBR Pedestal Width
100 15
80 10/~
60— 5
40:_ 0:/7/ A AT T AT T I T AT T 7 A 777 A
- 5 10 15 20 25 30 35
20—
0:I 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |
5 10 15 20 25 30 35

Figure 1: Pedestal calibration for BB right array.

The histogram file basically contains histogram directories named <detector>_Pedestals.
In each of these directories, you will find summary histograms (pedestal values and
widths versus PMT number) and subdirectories of histograms for individual PMT sig-
nal. Check them out. Correct the ascii files if you notice some weird behaviour in some
histograms (bad fit, negative values, etc). You’re now ready to commit this calibra-
tion to the database. This can be done from wherever on rcas. The bratmain script is
CommitPedCal.C. Edit it and change if needed. Note that all calibration modules a have
method SetCommitAscii(Bool_t). It should be set to kTRUE. The ascii files you got pre-
viously will be read by the modules and committed to the database automatically. If you
want to avoid any trouble, don’t change the format of these ascii files. You're allowed to
change numerical values only. If you have to set a kCalException for a given value, write
-1111 and nothing else. Note also a method called SetComment (const Char_t*). You

2

should write a comment string of at least 15 characters, describing wisely the calibration
you achieved and want to check in.

A typical usage of the commit script would be:

bratmain CommitPedCal.C -r 2476 or
bratmain CommitPedCal.C -r 2476 -f 2502 or
bratmain CommitPedCal.C -r 2476 -f 2502 -M hilux12.nbi.dk -U ouerdane

If you want to share your calibration, I strongly suggest you keep the default database
parameters.

2.2 Second Calibrations

In what follows, I work with data already reduced at the local tracking level. This data
contains local tracks from all tracking chambers, raw digits for the other detectors (BB,
TOF, Cherenkov, Mult arrays). The data files are located on some rcas directories, mainly
/brahms/data0<n>/igb/R<run>/seq/ with <n>= 1,2 and <run> is the run number. lan
Bearden is the one who reduced this huge amount of data.

If you want to know more about this reduction step, contact him at bearden@nbi .dk.
Some TPC calibrations were also done by Peter Christiansen (drift velocity, time offsets,
pad status), as well as some DC calibrations by Pawel Staszel. These calibrations are
used for local tracking in the forward arm. Contact these guys if you want to know more
about it (pchristi@nbi.dk and staszel@nbi.dk).

2.2.1 Beam-Beam counter calibration

Before any data reconstruction, you have to make sure that the Beam-Beam counters
are calibrated for the data to be reconstructed. We have already performed a pedestal
calibration for the BB arrays. For details about the BB, one can still read [3]. We have
now to do more advanced calibrations in this order:

1. TDC Gain
ADC Gain
ATDC (delay between reference tube and other tubes)

Slewing Correction (refinement of ATDC)

ANl

Vertex Offset (offset along the beam line with TPM1 tracks)

All of these calibrations use the same machinery: a script that processes the data, writes
histograms, fits those and saves the results to temporary ascii files, and a script to commit
the calibration to the database. Since all calibration modules derive from a base class, they
all have common methods (SetSaveAscii, SetCommitAscii, SetLoadAscii, SetComment,
SetCalibFile.)

For each of these calibrations, a script can be found in

<brat-install-dir>/share/brat/scripts/calib/bb

with explicit names.

TDC Gain Calibration

This calibration is extremely important since it is what will allow us to convert TDC
numbers to real time (in ns). This must be as precise as possible in order to get a good
time resolution. Since there are small differences between TDC modules, one has to
perform this calibration for each BB PMT and not apply blindly the nominal gain. But
the TDC Gain calibration doesn’t need to be done often. Once a year should be enough
as far as I could check. But if you really want to do it, be sure to select a TDC gain
calibration run for the data, otherwise you may have some bad surprises...Use the script
BbTdcGain.C and CommitTdcGain.C like for the pedestals.

ADC Gain Calibration

The ADC gain calibration is important because you want to make sure that you select
valid hits and not pedestal hits. Since each PMT has a different internal energy gain,
the idea is to normalize the ADC signals by a common quantity, which is the ADC of a
minimum ionizing particle (MIP). An ADC gain is much more unstable than a TDC gain
due to high-voltage mean value shift. I would say that this should be done every week
during a run period. To accumulate a reasonable statistics, you need to scan at least 15
sequences of a run. Make sure you select all triggers (1, 3, 4, 5, 6) to include peripheral
events. The reason is that the 1st MIP peak should be the highest. If you select only
central events, you may end up with multiple MIP peaks higher than the 1st one. Here
is a typical usage of this script:

bratmain BbAdcGain.C -r 5662 -I <input dir> -H bbAdcGainb662.root
-v 5

Here, <input dir> refers to one of the /brahms/dataOn/igb. You might want to set
other options, etc. Feel free to add your own options. Note that there are also several
ways to add sequence files to the input module, c¢f. Appendix B and [2].

Once the job is finished, open the histogram file and check histograms in BBx_AdcGain and
BBx_AdcGain/CalAdc. In the first one, you have summary histograms with calibration
values versus tube number. In the second directory, you have histograms for individual
tubes after ADC gain normalization. In Fig.2, you can see a typical distribution. The
1st MIP peak should be centered at 1. So far, we haven’t calibrated higher MIP peaks.
I know by experience that a couple of tubes will show some weird distribution. If you’re
in doubt, ask experts (write to brahms-1@bnl.gov). If they don’t know why they behave
oddly, ignore these tubes and tag them as bad in the ascii file (-1111).

Like the pedestals, use CommitAdcGain.C to commit the calibration ascii file. You can
now proceed with the ATDC step.

| Calibrated Adc, tube 41

800 1st MIP peak BBL, run 5734 to 5738

~
o
o

600

Number of counts [u.a]

el

1 2 3 4 5 6 7 8
Normalized ADC

Figure 2: Single tube ADC distribution after gain calibration.

ATDC Calibration

This calibration is crucial for our vertex and start time determination. It will also con-
tribute to the overall time of flight resolution so this calibration must be good. The idea
behind is to align all tubes to a reference tube in time because there are some delays
between them. These delays are due to e.g. different cable length. Since these tubes
detect on average particles with the same properties (not completely true but a good
assumption), their time distribution should be similar. That’s why we should correct for
the delay between them.

Use the script BbDeltaTdc.C and process the data in the same way. You can check the
parameters for the module BrBbDeltaTdcCalModule to work properly. Four methods
are of importance: SetRef(Int_t) to set the reference tube (usually 31 for the right
array and 37 for the left array), SetEnergyThreshold(Float_t) (typically 0.7 to avoid
pedestal hits), SetAdcSel(Float_t) (usually 0.1, it is the tolerance of the reference hit
ADC: ADC,.; = 1+£0.1), SetFitWindow(Float_t) (typically 2ns around the maximum
of the peak).

You histogram file should now contain directories BBx DeltaTdc with a summary his-
togram and a subdirectory with individual tube histograms. See Fig.3 for a typical cali-
bration.

Once this calibration is committed in the database (with the script CommitDeltaTdc.C),
the slewing correction can be done.

Slewing Correction Calibration

The slewing correction is a refinement of the previous calibration. The purpose is remove
the energy (or ADC) dependence of the time signal. This dependence is low for large
ADC but can be very pronounced for energy values around the MIP energy, thereofore
this will worsen the time resolution. The slewing correction procedure is to estimate the
function that describes this time-energy correlation the best and correct the experimental

BBL: DeltaTdc Dt

Reference tube

BBL: Delta Time 41 - 37 |

Chi2/ndf =20.54 /24

4001

w
@
=)

Prob =0.6658

Constant = 364.5 +7.129
Mean =-0.6034 +0.001861}
[_Sigma = 0.12 + 0.001555

ATDC [ns]

i Nw

3 3 8
ST T T T T T T T

Number of counts [u.a]
S S
o o

a
=]

P AN R AN AR
30

Ll ad NPT B
-4 2 0 2 4
ATDC tube 41 - tube 37

=)

Ll
25

L
20
Tube number

Figure 3: ATDC calibration.

signal by removing this dependence. The so far best function we use is

slewK slewP
At =1t; — trer = D 1
t=1t; — lrey = slew t+\/A—C+ADC (1)

slewDt, slewK and slewP are the slewing calibration parameters. The behaviour of this
function is the one described above (the asymptotic limit is slewDt for infinite ADC and
is in fact the real ATDC).

Chi2 / ndf =56.19 / 33
Prob =0.005566

]BBL: Slewing effect 5 - 37 |

1= p0 =-2.147 +0.04012
- pl =3.767 +0.1004
~ B p2 _ =-1.324 +0.06057
P> B
O 0.5
0 -
> -
- -
! -
8 of— - —]
2 N
S B
= B
Q.05
-U.o— R g
— - F g g
< B
-1
L cle v b e b b b b by 1y
0.5 1 1.5 2 2.5 3 35 4 45

Normalized ADC

Figure 4: Slewing effect and fitting.

The procedure implemented in brat follows almost exactly the same scheme as the ATDC
calibration. Use the scripts BbSlewing.C and CommitBbSlewing.C. The calibration mod-
ule builds the time difference between the TDC of a given tube and a reference tube but
plots it as function of the ADC of this given tube. In principle, for large ADC signals,
the correlation curve should get closer to an asymptotic limit, which will be the real time
offset. In practice, you might notice some weird correlation for a couple of tubes at these
large ADC values (gain saturation 7). If they’re really too weird (the function above
cannot describe them), you can decide either to set the slewing parameters to 0 (only
ATDC will be used) or -1111 (the tube will be discarded).

6

There’s a couple of methods that allow you to fixe a limit to your fit range:

SetMaxBigTEnergy(Float_t)
SetMaxSmallTEnergy(Float_t)

(typically 6 and 3 respectively). You should end up with histograms looking like the one
in Fig.4. To quickly check them, cf. Appendix D

Vertex offset

Now that all calibrations are stored in the DB and available, you can proceed with a
vertex offset calibration. This offset exists because the time calibration was not absolute.
There still remains an unknown delay between the right and left arrays. In order to do it
properly, you need TPM1 tracks and raw BB digits (e.g. use the reduced data mentioned
above to have noth). The scripts Bbvtx0ffset.C and CommitVtx0ffset.C do the job.
Three offsets are evaluated:

e BB vertex built with the big tubes only
e BB vertex built with the small tubes only

e BB vertex built with the fastest tubes only

Run the script BbVtx0ffset.C on a tenth of sequences. You will end up with a simple
ascii file with offsets and widths. Check the histograms and refit them by hand if needed
(correct the values in the ascii files if so). You will note that the small tube vertex is
the best correlated (for central events, the width is around 0.6cm) whereas the fastest
tube vertex is poorly correlated with TPM1 tracks. On Fig.5, you can see the three
correlations. These plots are typical. If you get something totally different, I suspect the
previous calibrations were not correct. Commit the values into the DB (you should use
the script CommitVtx0ffset.C and you're done with the BB calibration :)

2.2.2 Track matching offsets
Now comes a very important step. Depending on background conditions, drift velocity

fluctuations, etc, the track matching conditions can change, sometimes abruptly. The
track matching parameters are:

e dAly: difference between the slopes of the incoming and outgoing local tracks in the
y direction

e dAng difference between the angles of the incoming and outgoing local tracks (related
to the bending angle and momentum)

e dY difference between the intersections of the incoming and outgoing local tracks on
the matching plane (inside the magnet) in the Y direction.

7

400 Chi2 / ndf =920.4/ 198
Constant = 358.5+ 3.224
Mean = 18.5+ 0.01688

Sigma__= 2.556 + 0.01565

300

200

100 Big tube vertex

bt bt bt hent ot st s

" 1500 — Chi2 / ndf = 12.94/ 18
Y= B Constant = 1507 + 13.8
S - Mean =16.91 + 0.006011
8 = Sigma = 0.6784 + 0.007427
1000}—
[¥— I
o -
= -
O 500— Small tube vertex
S -
) B
zZ B
- Chi2 / ndf = 141.3 /58
400~ Constant = 372.6 + 3.818
- Mean = 24 +0.02865
300:_ Sigma =2.118 + 0.0304
200 7
L 7
100
: 7

BB vertex [cm]

Figure 5: BB vertex offsets for big tubes (top), small tubes (middle) and fastest tubes
(bottom).

In principle, if everything was perfect, these parameters should not show any offsets. But
of course, perfection doesn’t exist in this world :) So we need to know what these offsets
are and what the parameter resolution is. There are for now 4 places where we need
this information: the MRS, the FFS and two places in the BFS. I have a script called
MatchingOffset.C. It can be found in brahms_app/do_app/track. I usually run this
script so that for each run of reduced data, I get a histogram file called h<run>prel.root.
Run this script with the option --help to get some help. In this script, I declare global
tracking modules with all offsets set to zero, I also set a loose cut for track selection (150
for each parameter). You need to have the lastest version of brat to run it because of
the introduction of the BrFsTrackingModule. For the BFS parameters, don’t clean up
duplicates from T2 or T3 tracks matched with T4 tracks. The purpose is to get a good
statistics to evaluate the matching parameter offsets.

Once you have a bunch of histogram files h<run>prel.root, you can use the scripts
matchOffset.C for the FFS and MRS, or bfs0ffset.C for the BFS. For example, in a
root session:

root [0] .L matchOffset.C
root [1] offset(<begin run>, <end run>, <spec name>

with <spec mame> = MRS or FFS. If some runs are missing, don’t worry, it will try the
next one until it reaches <end run>. For the BFS, the script bfsO0ffset.C needs T2_T4
or T3.T4 or B (for back) as an argument for <spec name>. The result will consist in 2
things: one is a histogram plot with the three matching parameter offsets and widths as a
function of run number (cf. Fig.6), the second is an ascii file of fset <brun>_<erun>.<spec
name> where all the values are stored. Each line corresponds to a run (see Fig.7). You're
now ready for the main data reconstruction, understand global tracking and track-tof hit
matching.

3 Main Data Reconstruction

There’s nothing much different here (in principle) from the previous step where you al-
ready had to recontruct global tracks. You need to know here how to use the track
matching offset ascii file. Moreover, you have to add modules that do matching between
global tracks and tof hits for future PID. The way to read the ascii file is to first get a
module called BrMatchingOffsetModule located in brahms_app/do_app/track. I suggest
you get all my brahms_app directory and compile the subdir track. You can then load the
library 1ibTrackUtil.so in your own configuration scripts (cf. [2]). Let’s take a closer
look at the example below for the MRS (adding the FS can be done in the same way):

Here I include the module that updates the DB information.

// Module: BrDbUpdateModule
BrDbUpdateModule* dbUpdateModule =

new BrDbUpdateModule("DB", "DB Update");
mainModule->AddModule (dbUpdateModule) ;

000000
00000
000000

00000

-1

-1.5

-2
||||||||

000000

00000

uuuuuuuuu

Figure 6: Matching parameters versus run number.

*

* MRS Track matching offsets and widths
*

* Run

5361
5362
5367
5368
5378
5388
5398
5399
5407
5420
5432
5435
5438
5442
5446
5447
5460
5461
5465
5485
5494
5495
5508
5509
5512
5526
5527
5528
5529
5542
5544
5548
5549
5592
5593
5594
5609
5610
5611
5617
5641
5642
5649
5650
5654
5662
5671
5677
5678
5680
5684
5685
5692
5701
5702
5711
5713
5721
5734
5735
5736
5737
5738
5743
5749
5750
5763
5764
5765
5766
5767
5772
5773
5774
5790
5791

dAlY Off - Sig | dY
-0.0007518 0.0047228
-0.0045938 0.0044178
-0.0049148 0.0038728
-0.0046488 0.0038268
0.0000758 0.0047798
-0.0054338 0.0038178
-0.0004028 0.0036728
-0.0008308 0.0037018
-0.0005018 0.0037518
-0.0008928 0.0037018
-0.0017128 0.0037018
-0.0009988 0.0035128
-0.0008088 0.0034828
-0.0009858 0.0036878
-0.0026658 0.0037338
-0.0026578 0.0037348
0.0001528 0.0037978
-0.0004268 0.0037238
-0.0046048 0.0037268
-0.0013718 0.0046578
0.0008738 0.0042548
0.0006518 0.0042728
0.0011298 0.0054798
0.0034768 0.0053518
0.0050318 0.0052458
-0.0029428 0.0050028
-0.0028388 0.0049488
-0.0019438 0.0035708
-0.0028108 0.0048918
-0.0019108 0.0036088
-0.0025468 0.0048268
-0.0008718 0.0035408
-0.0008148 0.0035108
-0.0013638 0.0035088
-0.0008308 0.0034508
-0.0006158 0.0034078
-0.0044278 0.0038868
-0.0047048 0.0039328
-0.0050058 0.0042008
-0.0047758 0.0038568
-0.0087108 0.0046658
-0.0089728 0.0039438
-0.0082958 0.0045518
-0.0071918 0.0047038
-0.0067228 0.0043118
-0.0039888 0.0039028
-0.0048818 0.0038968
-0.0016638 0.0036618
-0.0014148 0.0036838
-0.0016468 0.0037558
-0.0017698 0.0037448
-0.0014038 0.0036688
-0.0024838 0.0038488
-0.0009828 0.0037898
-0.0010598 0.0038408
-0.0050488 0.0043718
-0.0038128 0.0041058
-0.0026088 0.0041138
-0.0009248 0.0039948
-0.0009978 0.0038758
-0.0012548 0.0038488
-0.0005758 0.0039288
-0.0007078 0.0041438
0.0000428 0.0040758
-0.0006608 0.0037458
-0.0003938 0.0038098
-0.0000678 0.0035878
0.0001498 0.0035838
-0.0000868 0.0036768
0.0002848 0.0036758
0.0002078 0.0034248
0.0011058 0.0032858
0.0008468 0.0032808
0.0009198 0.0033248
0.0008708 0.0032758
0.0008358 0.0033308

off - Sig

-0.3425198 0.4682708
0.1465848 0.4175488
0.2343708 0.3731668
0.2441048 0.3550178
—0.2021658 0.4538898
0.2440038 0.3792738
-0.1784618 0.3574428
-0.1331968 0.3720088
-0.1016348 0.3544528
-0.1545428 0.3547738
-0.0338298 0.3427848
-0.1273868 0.3338908
-0.1622078 0.3336248
-0.1460548 0.3451178
0.0099908 0.3500168
-0.0072848 0.3511558
-0.3248938 0.3814188
-0.2737068 0.3885278
0.1241918 0.3839338
-0.2731968 0.4987378
—0.3575988 0.4498748
-0.3327958 0.4484788
-0.5500488 0.5544158
—0.7855648 0.5721798
—-0.9730038 0.5608928
-0.2740998 0.4220838
-0.2914578 0.4202348
-0.2368358 0.3417108
-0.2937958 0.4204938
-0.0545508 0.3439218
-0.2819648 0.4130388
-0.1458248 0.3324748
-0.1454538 0.3328708
-0.2084388 0.3271588
-0.2460078 0.3278598
-0.2598808 0.3288208
0.2480598 0.3719998
0.2476548 0.3753118
0.2485678 0.3938368
0.0687278 0.3781338
0.0326128 0.4590478
0.0190348 0.4424048
—-0.0463338 0.4548158
0.0700438 0.4464158
0.1713588 0.4061638
0.0887018 0.3793148
0.2592898 0.3709808
-0.1609498 0.3546988
-0.1814278 0.3534458
-0.1505598 0.3628088
-0.1084658 0.3675268
-0.0878718 0.3492458
-0.2500178 0.3705528
-0.2488618 0.3508018
-0.2167858 0.3530968
-0.1089038 0.4088728
-0.1615248 0.3956338
-0.2533868 0.3933038
-0.5250048 0.3737848
-0.4646488 0.3733848
-0.4866078 0.3773138
-0.5254678 0.3661618
-0.7533278 0.4049278
-0.7063118 0.3973818
-0.4549068 0.3703498
-0.4487708 0.3623358
-0.4587198 0.3516168
-0.4669908 0.3394328
-0.4687878 0.3556338
—0.4504798 0.3492958
-0.4244518 0.3399888
-0.3166078 0.3191238
—0.3138248 0.3239878
—-0.3134498 0.3239438
-0.3247838 0.3180678
—0.3049388 0.3219708

| dAng Off - Sig |

-0.0035288 0.0071138
—0.0035318 0.0071358
—-0.0030768 0.0069478
—-0.0031918 0.0072388
—0.0034148 0.0066918
-0.0032868 0.0071508
-0.0027778 0.0072478
-0.0030858 0.0070328
-0.0027188 0.0065368
-0.0028608 0.0066108
-0.0027288 0.0066148
-0.0026558 0.0064488
-0.0026678 0.0066998
-0.0020768 0.0066998
—-0.0022758 0.0065908
-0.0021328 0.0065678
—-0.0024068 0.0062608
-0.0023018 0.0063568
-0.0024878 0.0065288
-0.0030348 0.0065198
—0.0028728 0.0061888
—-0.0031018 0.0061778
—-0.0033088 0.0060648
—0.0032288 0.0060028
—0.0030498 0.0060718
-0.0030678 0.0060608
-0.0033878 0.0063688
-0.0034358 0.0065388
-0.0034558 0.0062838
-0.0031368 0.0065938
-0.0027288 0.0066228
-0.0029138 0.0067818
-0.0027898 0.0065688
-0.0035078 0.0065238
-0.0037148 0.0066408
-0.0036208 0.0065348
—0.0032068 0.0065458
—-0.0031288 0.0065528
—-0.0033938 0.0064608
—0.0032968 0.0067238
—0.0034958 0.0063828
—-0.0035568 0.0064228
—-0.0034968 0.0064778
—0.0033358 0.0064878
-0.0035718 0.0065858
-0.0035218 0.0063678
—0.0033498 0.0065198
-0.0031888 0.0061568
-0.0031498 0.0063058
-0.0030258 0.0063848
-0.0030438 0.0061278
-0.0032428 0.0063708
-0.0030748 0.0067118
-0.0028358 0.0068888
-0.0028628 0.0069388
-0.0029338 0.0065398
-0.0030748 0.0065568
-0.0033648 0.0064318
-0.0002138 0.0061028
-0.0003158 0.0061048
-0.0003938 0.0061858
-0.0004198 0.0063678
-0.0005188 0.0061768
—0.0004408 0.0061998
-0.0002598 0.0062278
-0.0003438 0.0063768
-0.0002388 0.0066048
—-0.0000468 0.0063388
-0.0002968 0.0066238
—0.0000508 0.0065348
0.0002348 0.0059178

0.0002578 0.0057518

0.0003158 0.0057388

0.0003878 0.0056898

—-0.0000808 0.0056028
—0.0000248 0.0056368

Figure 7: Matching parameter offsets for the MRS.

11

Then comes the trigger filter.

// trigger filter

BrTriggerFilter* trig = new BrTriggerFilter ("TRIG","Trigger filter");
trig->AddTrigger (1) ;

trig->AddTrigger(3);

trig->AddTrigger(4);

trig->AddTrigger(5) ;

trig->AddTrigger(6) ;

mainModule->AddModule (trig) ;

The header module should also be put here. I need the trigger information for the final
DSTs.

// header module
mainModule->AddModule (new BrHeaderModule("Header", "Header Module"));

This is the way to recontruct the BB vertex. The parameters set here are optimal as far
as I could check.

// —— BB rdo module
BrBbCalHitsModule* bbRdo =
new BrBbCalHitsModule("BB","BB Calibrated hit Module");
bbRdo->SetTreeOn (KFALSE) ;
bbRdo->SetUse01dCal (kFALSE) ;
bbRdo->SetMaxTdc (2800) ;
bbRdo->SetMinTdc (10) ;
mainModule->AddModule (bbRdo) ;

// ———— BB vertex module

BrBbVertexModule* bbVtx = new BrBbVertexModule("BB", "BB Rdo Module");
bbVtx->SetTreeOn (kFALSE) ;

bbVtx->SetMaxTimeDiff (0.5);

bbVtx->SetUseSql0ffset (kKTRUE) ;

mainModule->AddModule (bbVtx) ;

Here, I declare the module that will read the matching offsets. Note also that although
the TPC tracking modules return BrTpcTrack objects, the global tracking modules still

need BrDetectorTrack. We therefore need to include the CopyDetectorTrack module for
all TPCs.

// Load my track library
gSystem->Load("1ibTrackUtil.so");
// —-——-- copy TPCTrack to DetectorTrack

12

Char_t* tpcNames[] = {"TPM1", "TPM2", "T1", "T2"};
for(Int_t i = 0; i < 4; i++)
mainModule
->AddModule (new CopyDetectorTrack(tpcNames[i],
"Copy track module"));

// ---- global tracking offsets
BrMatchingOffsetModule* trkOffset =

new BrMatchingOffsetModule("Track Offsets", "Track Offsets");
mainModule->AddModule (trkOffset) ;
trk0ffset->SetUseMrs (kTRUE) ;
trkOffset->SetMrsFile("offset5361_5791.MRS") ;

I create the MRS tracking module but I don’t need to specify the offsets anymore. I just
have to decide what my cut will be. I have to tell the matching offset module that mrs is
the pointer of the MRS tracking module.

/] ————- tracking module
BrMrsTrackingModule* mrs =

new BrMrsTrackingModule("MRSTrk", "MRS tracking");
mrs->GetCombineModule () ->SetFiducialCutDx(1.);
mrs->GetCombineModule () ->SetFiducialCutDy(1.);
mrs->GetCombineModule () ->SetSigmaCut (3.) ;

mainModule->AddModule (mrs) ;
trk0ffset->SetMrsModulePtr (mrs) ;

Here is the module that matches TOFW hits and MRS tracks. You can set offsets
between TOFW panels and TPM2. There used to be some but with the new geometry
there shouldn’t be anymore...to be checked.

/l ———- tof-track matching module
BrMrsTofMatchingModule* mrsMatch =
new BrMrsTofMatchingModule ("MRS", "MRS Track-Tof Matching module");

mrsMatch->SetNtuple (kFALSE) ;
mrsMatch->SetTdcRange (10, 4000); // default is [10, 4000]
mrsMatch->SetMaxAdc (100000.) ; // default is 10000000

mrsMatch->SetTpm2PanX0ffset (0,
mrsMatch->SetTpm2PanX0ffset (1,
mrsMatch->SetTpm2PanX0ffset (2,
mrsMatch->SetTpm2PanX0ffset (3,
mrsMatch->SetTpm2PanX0ffset (4,
mrsMatch->SetTpm2PanX0ffset (5,

); // default is 0
) // default is 0
.); // default is O
) // default is 0
); // default is O
) // default is 0

O O O O O O

13

AX Back Track (T2) - H1 Hit bDeltaX
[Fl 3994 : Nent = 104724
3000}—- O run .. é ... Mean = -0.5939
B RMS = 8.517
2500 ...S..Q.'.QQI.'.QH..@.Pp.l.l..(?.d ...
-0. 7 < AX <: O 7cm
2000_ ..
1500_ ..
1000 b e reaeeaeeaeiEeraaraateaeaaneaa e eeseesassteereedecesantsanatnaraasaadescanntnasaesaasandenctnasnasansannan
500_ ... J 5 R S
O‘ I/_I//Vm_—/ll-}-("v;.-:;l/ JI' LA /l-./j:r/}{_-}}./ I//-I///l/ LA AL J’) A A4 /i/-//l///)7_/l/l/l/7
-20 -15 -10 -5 0 5 10 15 20
AX (cm)

Figure 8: Difference in X between track projections and valid hit positions in the TOF
reference frame.

// default is 0.5
// default is 5

mrsMatch->SetMaxDX(1.2);
mrsMatch->SetNoPedWidth(10) ;
mainModule->AddModule (mrsMatch) ;

In Fig.8, there’s an example of tof hits matching tracks in the X direction of the tof detec-
tor plane. The peak is selected. This selection depends on the method SetMaxDX(Float_t).
Don’t put a random number, rather, think that this peak should have approximately the
width of a slat. For the FS, cf Appendix C.

I need to save TOFW digits. The reason is that I'll use the output data files (with global
tracks and raw TOF digits) for TOF calibration. Note that you can add more stuff if you
plan to analyze some centrality dependence on whatever, etc. It’s up to you to complete
it.

// copy module

BrCopyModule* copy = new BrCopyModule("Copy", "Copy Module");
copy->AddObject ("DigTof TOFW");

mainModule->AddModule (copy) ;

14

4 Hodoscope Calibration

Now that you have some data with BB vertex, global tracks, tof-track match objects, tof
digits, Cherenkov PID objects (useful for H1 and H2 calibration), centrality objects if you
thought about it too, you’re ready to calibrate the hodoscopes. Like for the BB counters,
this should be done at least every week of a run period. I say at least because we also
want to do it by setting (angle and magnetic field). You should then check with the DAQ
run viewer that you don’t mix up different run settings.

The TOF calibrations are:

e TDC Gain

e ADC Gain

ADelay and Effective speed of light

Time Offset

Slewing Correction
For each of them, there are 2 scripts in
<brat-install-dir>/share/brat/scripts/tof

One, named Tofxxx.C, processes the data and saves teh results into ascii files. The other,
named Commitxxx.C, allows you to commit these ascii files to the SQL database.

The tof calibration module classes derive also from a base class. Therefore, some meth-
ods are common to all of them! like SetSaveAscii, SetCommitAscii, SetCalibFile,
SetComment. You already know what they are useful for.

4.1 TDC Gain

Same story (cf. BB TDC Gain). Use the scripts TofTdcGain.C and CommitTdcGain.C.
Run the 1st one on TDC gain calibration only. Do it only once a year (well, do it as many
times as there are some TDC gain cal. run to check the gain stability).

4.2 ADC Gain

Same story as well (cf. BB ADC). Use the scripts TofAdcGain.C and CommitAdcGain.C.
Check the histograms before committing anything to the SQL DB. A typical calibrated
ADC should look like the one on Fig.9. The only thing to know is that each slat has 2
tubes, one on its top, one at its bottom. You should therefore make twice more checks.

You should be aware that some tubes will show very little statistics (e.g. outer slats in
TOFW). If there are only a tenth of counts, you cannot conclude anything. What I did
in this case is to check how stable the gains were for tubes with high statistics over a long

'In fact, the BB calibration modules were strongly inspired by the TOF modules.

15

| Calibrated Adc, botslat 57 |

80 TbFW sélat, run 5650f to 56‘;-34
o

60
50
40

30

Number of counts [u.a.]

20

10

s ://rﬁlﬂf‘-ﬂ.iﬂ—ﬁlmnél|n| Ilinhlnlil 1l |i| !
1 15 2 25 3 3.5 4 4.5
ADC normalized by MIP ADC

7|ﬂ1nﬁq-|%||3y]/
0.5

o

Figure 9: Typical calibrated ADC.

period of time. I then merged all histograms over this period of time (really a lot) to have
a reasonable statistics in the outer tubes and could therefore get a rough ADC gain. For
this calibration, I think that mixing different settings doesn’t really matter.

4.3 ADelay and Effective speed of light

This calibration is specific to the hodoscopes. The quantity ADelay is the difference
between the delays of the bottom and the top tubes. Indeed, each tube has a delay
(like the BB tubes). It is possible to get the difference between these delays from simple
geometrical considerations. Take tracks matching hits in a given slat. These tracks
correspond to particles that deposit energy in this slat. From the intersection between
the tracks and the slat, light is emitted and propagates towards the tubes. Since the slat
is made of scintillating material and has a certain finite volume, there is some reflections
and other processes that contribute to lower the speed of light, that’s why we talk about
an effective speed of light. It turns out that the difference between the time signals of the
bottom and top tubes is directly proportional to the location (along the slat axis) of the
track intersection. We have the equation

2Y;‘,Tack
Ceff

with c.rs the effective speed of light. But in reality, because of the delays in each tube
this equation is

(2)

At = oot — ttop =

2Yvrac
Atea:p = (tbot - ttop)emp = track + ADelay (3)

Cesf

This is illustrated in Fig.10.

So, after having used the script TofDeltaDelay.C, you should check all profiles in the root
directories TOFxDelays/Slats and the summary histograms in TOFxDelays/Delays. A

16

Slat 77: ATlme VS YTrack I :

1.5 TO.FWSIét77r;l.J.r.]56.50t05,654 44444 , 4444444444444444 , , 4444444444444444 ;‘*

11 1 | 11 1 | 111 | 11 1 | 111 | 11 1 | 11 1 | 11 1 | 11 1 | 111
-10 -8 -6 -4 -2 0 2 4 6 8
Track intersection along slat axis [cm]

Figure 10: ADelay and effective speed of light.

typical summary for H1 is shown on Fig.11. On average, all slats have the same effective
speed of light. Yet, a couple of them seem to be lower. This can be due to noisy PMTs, bad
fits due to low statistics, etc. You can commit the calibration with CommitDeltaDelay.C.

This calibration is useful for selecting tracks well correlated to TOF signals. Indeed, even
if the prior selection in the X direction removed most of the background, there still remain
some ghost tracks or multiple hits matching single tracks, etc. Selecting tracks and hits
matching as well in the Y direction removes a part of this noise. Note that you can set
the range of the profile fit with the method

BrTofDeltaDelayCalModule: :SetYRange (<min>, <maz>)

<min>and <maz> are in cm. They shouldn’t be bigger than 2/3 of the slat height to avoid
fitting non-linearities.

4.4 Time offsets

Like for the beam-beam counters, there’s a time offset for each PMT. It is also crucial
to correct for this offset in order to get a good TOF resolution and consequently a good
PID. But if one manipulates equations relating the time measured by the TDC modules
and the real particle time of flight, it is possible then to reduce the PMT time offset to
an overall slat time offset (ignoring the slewing correction). Indeed, if b,y and t,;; are
the time offsets for the bottom and top tubes respectively, tof the particle time of flight,
lpot the time measured by the bottom tube TDC, t;,, the one measured by the top tube
TDC, t, the starttime of the collision, b, the time it took for the light in the slat to reach
the bottom tube and ¢, to reach the top tube, we have (if we ignore the slewing effect):

tot = tof +borr+0b1 +1t, (4)
tiop = tof +torr+1t1L+1, (5)

17

TOF1: Speed of light (cm/ns)

N
o

Run 5361 to 5378

\i\\\\l

=
&)

Effective speed of light [cm/ns]
5

2]
_\\\\g\\\\g\\

5 10 15 20 25 30 35 40
Slat number

Figure 11: Effective speed of light versus Slat number in H1.

By summing these two equations and isolating tof, one can extract only one constant:

1 .
tOf = 5 [ttop + tbot] — to — tlm@offset (6)

with timegsrser = 0.5(bors +toss + b1 +t1). Indeed, b, + ¢, is a constant since it’s equal
to Slat Height /c.s;. The algorithm implemented in BrTofTimeOffsetCalModule is a
bit more complicated. Since we don’t know either tof or time,srst, we have to a bit
more clever. What we know is that a track is associated to the tof hit. This track has a
momentum and a path length. Since most of the particles are pions, we don’t introduce
(statistically speaking) too much error by assuming that the particle mass is the pion
mass. Having this in hands, we can calculate an expected time of flight:

L 2
tofin = Zrek 1P 1y (™)
c m;

It is now trivial to get the time offset:

timeoffset = tofe;cp - tofth (8)

with tofezp = 0.5 [top + tpot] — to. If you have followed until now, congratulations, you're
smart enough to do the TOF calibrations.

Anyway, there are scripts TofTimeOffset.C and CommitTimeOffset.C to do the job (pick
them up at the usual place). For the FS, we have Cherenkov detectors that allow to select
only pions. You should therefore perform a Cherenkov PID in your main recontruction
(cf. Appendix C). Once the calibration is done, check of course the histograms. A time
offset of a given slat should look like the one on Fig.12. The peak is the time offset. The
tail is due to particles that are not pions.

18

TOFW slat 70, run 5662 to 5680
600—
E' L
3 -
%) L
c
> 400—
o
Q -
S L
o L
o
£ 200—
>
Z |
OLALAALAlell

-50 -45 -40 -35 -30 -25 -20 -15 -10
texp - tin [ns]

Figure 12: A typical time offset calibration.

4.5 Slewing correction

There’s no slewing correction for TOFW. It is not obvious to do if you cannot select a
certain particle specie. In the FS, it is possible thanks to the Cherenkov PID. The only
problem is that the slewing effect is a property of a tube and cannot really be averaged
over the whole slat like for the time offsets. Because of this, you have to rely on your
effective speed of light calibration since you need to evaluate the particle time of flight
measured by each individual tube. This calibration should for the moment be taken care
of by experts only.

5 Final Reconstruction (PID and DSTs)

Now that you have calibrated the hodoscopes, you can reconstruct the tof hits and make
a PID. You should pick up the script

brahms_app/pc-app/dst/makeDst.C. You have first to compile the 1ibDst (in the same
directory). This script has TOF rdo and pid modules for each spectrometer arm. A
typical call of this script would be:

bratmain makeDst.C -r <run> -I <input-dir> -t <tree-file> -v 5 —-fs

<input-dir> is the directory where you have your global track sequences, <tree-file>
is the output tree file (DST), --fs enables the job for the forward spectrometer. So far, I
never had --fs --mrs on the same command line. It’s because we agreed originally with
Peter Christiansen to have separate trees for MRS and F'S. You will have therefore to run
the job twice, one for the MRS, one for the FS separately.

Once you have DSTs, you can browse them with root scripts in the brahms_app/pc_app/dst
directory (called exeAnaxxxDst.C). The rest is up to your imagination and intelligence

19

for the analysis. To know more about the DSTs (trees containing all the information for
physics analysis), contact me or Peter at ouerdane@nbi.dk, pchristi@nbi.dk.

References

[1] Christian Holm, CRASH, CRs Application SoftwareHome,
http://pii3.brahms.bnl.gov/ brahmlib/crash/

[2] Christian Holm, The Hitchhikers Guide to BRAT, in
<install-dir>/share/doc/brat

[3] Yury Blyakhman, Beam-Beam Counters and Charged Particle Multiplicity in the
Brahms Experiment, Department of Physics, New York University, May 2001

20

A Database Connection

A typical sequence in the bratmain configuration script:

//

// Database section

//

BrMainDb* mainDb = BrMainDb::Instance();
mainDb->SetUserName (dbuserOption->GetValue());
mainDb->SetHostName (maindbOption->GetValue()) ;
mainDb->SetDbName ("BrahmsMain") ;

// Un comment if you need access to database
if (!mainDb->Connect())
return;
if (!mainDb->ConnectToRun())
return;
if (!mainDb->ConnectToCalib())
return;
if (!mainDb->ConnectToGeom())
return;

BrRunInfoManager* runInfoManager =
BrRunInfoManager: : Instance();

runInfoManager->SetDebuglLevel (debugOption->GetValue());

runInfoManager->Register (runOption->GetValue());

BrCalibrationManager* calibrationManager =
BrCalibrationManager: :Instance();
calibrationManager->SetDebugLevel (debuglption->GetValue()) ;

BrGeometryDbManager *geometryManager =
BrGeometryDbManager: : Instance() ;
geometryManager—->SetDbModeMySQL() ;

If you don’t know anything about it, refer to [2] but the default values should be ok if
your $(HOME) /.bratdbrc file is up to date.

It can happen that pii3 is down. In this case, the connection sequence is:

//

// Database section

//

BrMainDb* mainDb = BrMainDb::Instance();
mainDb->SetUserName (dbuserOption->GetValue());
mainDb->SetHostName (maindbOption->GetValue());

21

mainDb->SetDbName ("BrahmsMain") ;

BrRunsDb* rundb = BrRunsDb::Instance();
rundb->SetUserName ("query") ;
rundb->SetHostName ("rcas0005.rcf .bnl.gov");

rundb->SetDbName ("RUNDB") ;

// Un comment if you need access to database

if (!mainDb->Connect())
return;

if (!rundb->Connect())
return;

if (!mainDb->ConnectToCalib())

return;

if (!mainDb->ConnectToGeom())

return;

The difference with the first sequence is that by default the BrMainDb will connect to
pii3. In the last case, you explicitely set the host name where a copy of the RUNDB sits.

B Hints on Reconstruction Production

There are many ways to reconstruct many sequences of many runs.
reconstruction, I prefer doing it sequence by sequence (safer!) since jobs can take long
and you don’t want them to crash after the 100000th event when you output the result to
one single file...which makes it unreadable. Since the output module (BrEventI0) has its
io mode set to BrIOModule: :kBrJobFile | BrIOModule::kBrRecreateFile, it can only
output to one single file. Therefore, if you want to get output files sequence by sequence,
you need e.g. a shell script in which you would make a loop over the number of sequences.
An example of such a shell script can be found on rcas in “ouerdane/cal/reco/Reco.csh.

If you call the help option, you would get:

rcas0020:reco> ./Reco.csh -h
———————————— Command options

-c --script <scr>
-r -—-run <run>
-8 -—-sequence <seq>
-f --final-seq <fseq>
-e --events <nevt>
-i --input-dir <dir>
-0 --output-dir <dir>
-g --geo-basename <geo>
-h --help

. Ciao!!

rcas0020:reco>

Script filename

Run number, default is O

First sequence, default is 0

Final sequnce number, default is 0O
Number of events default is 100000000000
input directory, default is datal

output directory, default is reco2/ffs
Geofiles basename (<base>.geo <base.mag>)
This help

22

For production

A typical call of this script would then be:

./Reco.csh -c <bratmain-script> -r <run> -s <begin-seq> -f <final-segq>
-i <input-dir> -o <output-dir>

For each sequence in <input-dir>, you would get a output sequence in <output-dir>.
I do this systematically for the main reconstruction (cf. section 3).

C Reconstruction of the F'S data for TOF calibration

In section 3, I gave an example dealing with the MRS. For the FS; it is quite similar in
essence, but you have to deal with more things. Let me show you how it is done:

First, I load my track library and set the approriate spectrometer sections:

// Load my track library
gSystem->Load ("1ibTrackUtil.so");

// —-—-—-- copy TPCTrack to DetectorTrack
Char_t* tpcNames[] = {"TPM1", "TPM2", "T1", "T2"};
for(Int_t i = 0; i < 4; i++)
mainModule
->AddModule (new CopyDetectorTrack(tpcNames[i],
"Copy track module"));

// —--—-- global tracking offsets
BrMatchingOffsetModulex trkOffset =
new BrMatchingOffsetModule("Track Offsets", "Track Offsets");
mainModule->AddModule (trkOffset) ;
trk0ffset—>SetUseFfs (kTRUE) ;
trk0ffset—>SetUseBfs (kTRUE) ;
trk0ffset—>SetFfsFile("<some offset file for ffs>");
trk0ffset->SetBfsFiles ("<t2-t4 file>", "<t3-t4 file>", "<t4-t5 file>");

I then declare a BrFsTrackingModule and call UseBbVertex() so that it gets the BB
primary vertex for tracking back to it and I don’t forget to tell trkOffset which are the
pointers to BrFfsTrackingModule and BrBfsTrackingModule. This is important if you
want to use the track matching offsets ascii files.

// FS Tracking module
BrFsTrackingModule* fsmod =
new BrFsTrackingModule("FS", "FS Tracking");
fsmod->UseBbVertex() ;
mainModule->AddModule (fsmod) ;

// FFS

23

BrFfsTrackingModulex ffs = fsmod->GetFfsModule();
trk0ffset->SetFfsModulePtr (ffs) ;
ffs->GetCombineModule () ->SetFiducialCutDx(1.);
ffs->GetCombineModule () ->SetFiducialCutDy(1.);
ffs->GetCombineModule () ->SetSigmaCut (3.) ;
ffs->SetNtuple (kFALSE) ;

// BFS

BrBfsTrackingModule* bfs = fsmod->GetBfsModule() ;
trkOffset->SetBfsModulePtr (bfs) ;
bfs->SetExtendD3Match (kFALSE) ;
bfs->SetExtendD4Match (KFALSE) ;

bfs->SetCleanUp (BrBfsTrackingModule: :kCUT2, kTRUE);
bfs->SetCleanUp (BrBfsTrackingModule: :kCUT3, kFALSE);
bfs->SetD4FieldScaleFactor(1.0);

// FRONT
bfs->GetCombineT2T4 () —>SetFiducialCutDx(1.);
bfs->GetCombineT2T4 () ->SetFiducialCutDy(1.);
bfs->GetCombineT2T4 () ->SetSigmaCut(3.);

bfs->GetCombineT3T4()->SetFiducialCutDx(1.);
bfs->GetCombineT3T4 () ->SetFiducialCutDy(1.);
bfs->GetCombineT3T4()->SetSigmaCut(3.);

// BACK

bfs->GetCombineT4T5() ->SetFiducialCutDx(1.);
bfs->GetCombineT4T5 () ->SetFiducialCutDy(1.);
bfs->GetCombineT4T5() ->SetSigmaCut(3.);

That should be it for the global tracking modules. The rest deals with tof-track matching.
Here we go:

/] ———- tof-track matching module
BrFfsTofMatchingModule* match =
new BrFfsTofMatchingModule ("FFS", "FFS Track Matching module");

match->SetUseH2 (kFALSE) ;
match->SetNtuple (kFALSE) ;
match->SetTdcRange (10, 4000) ; // default is [10, 4000]

match->SetMaxAdc (100000.) ; // default is 0.5
match->SetT2H1X0ffset (0.) ; // default is O

match->SetMaxH1DX(0.7); // default is 0.5
match->SetNoPedWidth(10) ; // default is 50

mainModule->AddModule (match) ;

BrBfsTofMatchingModule* bmatch =
new BrBfsTofMatchingModule("BFS", "BFS Track Tof Matching module");

24

bmatch->SetNtuple (kFALSE) ;
bmatch->SetTdcRange (10, 4000) ;
bmatch->SetMaxAdc (100000.) ;
bmatch->SetMaxH1DX(0.7);
bmatch->SetMaxH2DX(1.);
bmatch->SetT2H1X0ffset (0.) ;
bmatch->SetT3H1X0ffset(0.);
bmatch->SetT5H2X0ffset (0) ;
bmatch->SetNoPedWidth(10) ;
mainModule->AddModule (bmatch) ;

//
//
//
//
//
//
//
//

default
default
default
default
default
default
default
default

is
is
is
is
is
is
is
is

[10, 40001
0.5

.5
.5

O O O O O

For time offsets calibration and slewing correction, you should have a Cherenkov PID
as well. In your script you should have after the global tracking modules. You should
contact Claus Ekman at ekman@nbi.dk for the latest and best set of parameters. Don’t

take the ones below as granted.

// C1 RDO
BrChkvRdoModule* clRdo =

new BrChkvRdoModule("C1","C1");
c1Rdo—>SetThreshold(1.0);
mainModule->AddModule (c1Rdo) ;

// C1 PID
BrCiPidModule* c1PidMod =

new BrCiPidModule("C1Pid","C1Pid");

mainModule->AddModule(c1PidMod) ;

// RICH RDO
BrChkvRdoModulex richRdo =

new BrChkvRdoModule("RICH","RICH");

mainModule->AddModule (richRdo) ;

// RICH PID
BrRichPidModulex richPidMod =

new BrRichPidModule("RichPid","RichPid");

mainModule->AddModule (richPidMod) ;

Of course, you should not forget to copy tof digits!

BrCopyModule* copy = new BrCopyModule("Copy", "Copy module");

copy->AddObject ("DigTof TOF1");
copy->AddObject ("DigTof TOF2");
mainModule->AddModule (copy) ;

25

D Calibration check

There’s an easy way to know if a revision already exists in the calibration database. You
just have to open your favourite web browser, go to this link:

<http://pii3.brahms.bnl.gov/"daq/calibtool>

enter the run number to check and choose the detector(s) you're working on, e.g. in
Fig. 13 for run 5662 and BB Left:

Parameter Start mun End mn
pedestal 5789 5789
pedestalWidth 5789 5789
adcGaind 5806 5808
-1 -1
: -1 -1
adcGapStart 2454 2454
adcGap 2484 2484
tdcGain 3800 3935
deltaTdc 5806 5806
slewr K 5806 5806
slew Dt 5806 580&
slewrP 5806 580&

Figure 13: Revision check of Beam-Beam Left for run 5662.

The red parameters are the ones without any revision. The 1st column with run numbers
is the start time of the revision validity for the corresponding parameter, the last column
is the end time of the validity. Note that the policy for most of the calibration parameters
is that if a revision is not found in the database, the closest one backward in time to the
run you're processing will be used.

A few words on how to check a calibration (histograms), and redo a fit for complicated
calibrations. In most of the calibrations, the fit uses a simple gaussian or 1lst degree
polynomial functions. This can be redone by hand. For more complicated calibrations,
I provide a simple root script that allows you to display the histograms + the fits and
to refit them. So far, I installed a script called refitSlewing.C. Let’s say that you have
run the script BbSlewing.C on data and got a file bbSlewing.root containing all the

26

histograms. The following sequence shows you an example of fit checking:

prompt?
root [0]

root bbSlewing.root

Attaching file bbSlewing.root...

root[1]
root[2]
root [3]
root [4]
root [5]
root [6]
Leaving

.L refitSlewing.C

display(1, “‘1’’) // display tube 1 of left array
refit(0.7, 3.5, 1, ““1’’) // ADC fit range in MIP units
display(15, ‘‘r’’) // display tube 15 of right array
refit(0.8, 2.8, 15, ‘‘r’’)

-q

ROOT

Each time you redo a fit if necessary (when e.g. the fit at large ADC is bad), you have to
save the new parameters in the ascii file you got when your job was finished. Then you
can commit the calibration to the database.

I will provide such a script for other calibrations that require a refitting.

27

