System and rapidity dependence of baryon to meson ratios at RHIC

Eun-Joo Kim ${ }^{\text {a }}$ for the BRAHMS Collaboration
${ }^{a}$ University of Kansas, Lawrence, Kansas 66045, USA

The rapidity and centrality dependence of baryon to meson ratios in $\mathrm{Au}+\mathrm{Au}, \mathrm{Cu}+\mathrm{Cu}$ and $\mathrm{p}+\mathrm{p}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ at RHIC is presented. The \bar{p} / π^{-}ratios are founded to be independent of collision system at a fixed $<N_{\text {part }}>$ at mid- and forward rapidities.

1. Introduction

One of the unexpected observations at RHIC was the enhancement of proton and antiproton yields relative to pion yields at intermediate p_{T} around midrapidity [1], which was not seen in elementary hadronic collisions. An explanation for this behavior was proposed by the combination of pQCD calculations with soft physics and jet quenching [2]. It has been demonstrated that the fragmentation functions at large momentum fraction play an important role in hadron production [3]. Alternative models that attempt to describe these baryon to meson ratios include a phase-space determined parton coalescence picture [4,5], as well as the dynamics driven models of recombination [6], baryon-junction transport $[7,8]$, and hydrodynamic flow [9]. Central $\mathrm{Au}+\mathrm{Au}$ collisions are expected to provide a partonic medium where the coalescence of soft partons can occur. Coalescence will depend on the system size of the partonic fluid and is expected to be less influential for the $\mathrm{Cu}+\mathrm{Cu}$ system. In this process, the p / π ratios can provide important information on the dynamics of how the medium evolves longitudinally. The BRAHMS experiment $[10,11]$ has studied rapidity dependent baryon to meson ratios at $y=0$ and $\eta \sim 3.2$ for $\mathrm{Au}+\mathrm{Au}$, $\mathrm{Cu}+\mathrm{Cu}$, and $\mathrm{p}+\mathrm{p}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$.

2. Results

The data were obtained with two movable BRAHMS spectrometer arms, the MidRapidity Spectrometer (MRS) at 90°, and the Forward Spectrometer (FS) at 4°, and global detectors for event characterization. Particle identification was done using time-of-flight and threshold gas Cherenkov measurements in the MRS, and a ring imaging Cherenkov detector (RICH) for the FS. Figure 1 shows the \bar{p} / π^{-}ratios as a function of p_{T} obtained at midrapidity and forward rapidity for the $0-10 \%, 10-20 \%, 30-50 \%$ and $60-80 \%$ centrality bins in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. The data for the same energy $\mathrm{p}+\mathrm{p}$ collisions are also shown. The antiproton to π^{-}ratios show a smooth increase from peripheral to central collisions, and the data for peripheral $\mathrm{Au}+\mathrm{Au}$ collisions approach the $\mathrm{p}+\mathrm{p}$ results. The centrality dependence is stronger at midrapidity than at
forward rapidity, and the peak in the \bar{p} / π^{-}ratio is lower at forward rapidity as compared to midrapidity. Theoretical model calculations for p / π ratios are compared to the exper-

Figure 1. Centrality dependent \bar{p} / π^{-} ratios at $y=0$ and $\eta \sim 3.2$ in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Data at $\mathrm{p}+\mathrm{p}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ are also shown. No $\bar{\Lambda}$ feed-down correction applied. Error bars are statistical only.

Figure 2. Preliminary p / π for $0-10 \%$ central $\mathrm{Au}+\mathrm{Au}$ collisions at rapidity $y=0$ and $\eta \sim$ 3.2. Feed-down corrections are applied at $y=0$, but not at $\eta \sim 3.2$. Comparisons with model calculations at $y=0$ are shown by curves.
imental data in Fig. 2. Parton coalescence [4] and recombination [6] models describe the observed ratios well at midrapidity, but three-dimensional (3-D) hydrodynamic model [9] also reproduce the observed features of p / π enhancement without depending on baryon junction or coalescence. In the 3-D hydrodynamic model, the interplay between soft and hard reaction components is expected to occur at intermediate p_{T}, and the model defines a crossing point in transverse momentum, $p_{T, \text { cross }}$, which might be related to the peaks evident in Fig. 1. The p / π ratios are enhanced at forward rapidity, as shown in Fig. 2. Even though protons at high rapidity are expected to develop mostly from the projectile, rapidity dependent recombination and/or radial flow effects at the partonic level, or the inclusion of a varying baryo-chemical potential in the hydro calculations, will likely be
needed to fully understand the experimental observations.

Figure 3. p / π ratios as a function of p_{T} for different systems, $\mathrm{Au}+\mathrm{Au}, \mathrm{Cu}+\mathrm{Cu}$, and $\mathrm{p}+\mathrm{p}$ collisions at midrapidity and forward rapidity. No Λ and $\bar{\Lambda}$ feed-down corrections applied, and the error bars are statistical only.

The p / π ratios for different collision systems as a function of transverse momentum at $y=0$ and $\eta \sim 3.2$ are shown in Fig. 3. The proton to pion ratios in p_{T} increase with the colliding system size from $\mathrm{p}+\mathrm{p}$ to $\mathrm{Au}+\mathrm{Au}$ collisions. The peaks in the data, presumably related to crossing points in p_{T}, are at similar positions for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at the same rapidity.

Figure 4 shows the centrality dependence of \bar{p} / π^{-}ratios as a function of the number of participating nucleons, $\left\langle N_{\text {part }}\right\rangle$, at different rapidities, $y=0$ and $\eta \sim 3.2$, for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ systems at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. The integrated \bar{p} / π^{-}ratios with $1.5<p_{T}<2.5$ are shown for each centrality bin. The data indicate that the particle ratios increase for both rapidities going to more central collisions up to $N_{\text {part }} \approx 100$, and show a weak dependence from the midcentral to the most central collisions. The \bar{p} / π^{-}ratios with $N_{\text {part }}$ from different colliding systems are independent of system size at both rapidities.

3. Summary

In summary, BRAHMS has measured rapidity dependent baryon to meson ratios for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{N N}}=200 \mathrm{GeV}$ as a function of p_{T} and centrality. The ratios are enhanced in nucleus-nucleus collisions compared to $\mathrm{p}+\mathrm{p}$ collisions and increase with centrality. Positive and negative ratios show similar interplay between soft and hard processes for different systems. The \bar{p} / π^{-}ratios for different colliding systems show a

Figure 4. Rapidity and $<N_{\text {part }}>$ dependence of \bar{p} / π^{-}ratios for $1.5<p_{T}<2.5$ at $y=0$ and $\eta \sim 3.2$ in $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Circle(closed) symbols are the results at $y=0$, and square(closed) symbols are the results at $\eta \sim 3.2$ in $\mathrm{Au}+\mathrm{Au}$ $(\mathrm{Cu}+\mathrm{Cu})$ collisions. The error bars are statistical only.
similar $<N_{\text {part }}>$ dependence at a fixed rapidity, and no significant changes for the baryon-meson production mechanism are observed with different beam species.

4. Acknowledgments

This work was supported by the division of Nuclear Physics of the Office of Science of the U.S. Department of Energy, the Danish Natural Science Research Council, the Research Council of Norway, the Polish State Committee for Scientific Research and the Romanian Ministry of Education and Research.

REFERENCES

1. S. S. Adler et al., PHENIX Collaboration, Phys. Rev. Lett. 91 (2003) 172301.
2. I. Vitev and M. Gyulassy, Phys. Rev. C65 (2002) 041902.
3. X. Zhang, G. Fai and P. Lévai, Phys. Rev. Lett. 89 (2002) 272301.
4. V. Greco, C. M. Ko and P. Lévai, Phys. Rev. Lett. 90 (2003) 202302.
5. V. Greco, C. M. Ko and I. Vitev, Phys. Rev. C71 (2005) 041901(R).
6. R. C. Hwa and C. B. Yang, Phys. Rev. C70 (2004) 024905.
7. I. Vitev and M. Gyulassy, Nucl. Phys. A715 (2003) 779c.
8. V. Topor Pop, M. Gyulassy et al., Phys. Rev. C68 (2003) 054902.
9. T. Hirano and Y. Nara, Phys. Rev. C69 (2004) 034908.
10. M. Adamczyk et al, BRAHMS Collaboration, Nucl. Instr. and Meth. A499 (2003)437.
11. I. Arsene et al, BRAHMS Collaboration, Nucl. Phys. A757 (2005) 1-27.
