Rapidity distributions of π^{\pm} , K^{\pm} and p (\bar{p}) in p+p and d+Au collisions at 200 GeV

Hongyan Yang

for the BRAHMS Collaboration

Department of Physics and Technology, University of Bergen Allegaten 55, 5007 Bergen, Norway hongyan@ift.uib.no

The rapidity density dN/dy of produced particles is strongly related to the energy density in the collision system^[1]. Net-proton rapidity distribution are related to the baryon transfer process (stopping)^[2].Rapidity densities of π^{\pm} , K[±] and p (\bar{p}) in two collision systems, p+p and d+Au collisions are presented. These system can be thought of as controls for Au+Au measurements^[3]. The scaling of the rapidity density by the number of participants ($\langle N_{part} \rangle$) and number of binary collisions ($\langle N_{coll} \rangle$) involved in the collisions may reveal different physics at mid-rapidity and forward rapidities, e.g. comparison of the net-proton rapidity density in the central Au+Au collisions with smaller control systems such as p+p and d+Au will help us understand the baryon transport in these systems. Rapidity densities of identified charged hadrons (π^{\pm} , K[±] and p (\bar{p})) and net-protons measured by the BRAHMS experiment in different systems are compared to each other and to model predictions^[4,5,6]. Finally the centrality dependence of the rapidity density in d+Au collisions will be discussed.

References

- [1] W. Busza and R. Ledoux, Anu. Rev. Nucl. Part. Sci., 36, (1988) 119;
- [2] F. Videbaek and O. Hansen, Phys. Rev. C, 52, (1995) 2684;
- [3] R. Nouicer for the PHOBOS Collaboration, J. Phys. G, 30, (2005) S1133;
- [4] S. E. Vance, M. Gylassy, X.-N. Wang, Phys. Lett. B, 443, (1998) 45;
- [5] Z.-W. Lin and C. M. Ko, Phys. Rev. C, 68, (2003) 054904;
- [6] J.-P. Blaizot and F. Gelis, Nucl. Phys. A, **750**, (2005) 148.