#### Flow analysis using MRS/FS

H. Ito

4 separate angles: 4, 8(not quite done), 40 and 90 degPion and hopefully Proton (will not be shown)

# TFW2 PID

#### TFW2 is used for PID in MRS

#### Looks good upto here?



# TFW2 Pi-K separation at 90 deg

Would C4 help? What is the regection (or contamination) factor of C4?



#### Pion selection in MRS by TFW2



#### Centrality 0-50%?

Spectrometer trigger tends to select more central events. Dividing events in smaller centrality range is ideal. But, there may not be enough events to divide.



## v2 from MRS at 90 degree

MRS 90 deg



## V2 from MRS at 90 degree

MRS 90 deg

Correction = 0.233-> It is better than 0 - 50% selection

20-50% central



## Centrality dependence 90 deg

Red 20-50% Blue 0-50%



#### TFW2 Pi-K Sepration at 40 deg



# V2 at 40 deg



## **RICH PID**



#### Pion selection in FS by RICH



Cuts are currently done by RICH MASS. It will be changed to difference from the theoretical line.

# V2 at 4 deg



# Things to do

•To increase statistics for low Pt, use H1 + C1

- What is the regection factor in C1?
- •To increase PID range in MRS, use C4
  - What is the regection factor in C4?
- •See how Proton is doing?
- •See how Kaon is doing?

•Theoretical prediction ---> Punch line?

•

•