

High-pt in BRAHMS (with some of my personal point of view)

- dAu: Some Issues: Cold nuclear effect
- CGC measurements in dAu?
- y ≈ 1 not not-interesting (physics doesn't have to be the same as at y=0)
- What can we learn from suppression factors in p_L (can this be sensitive to source profile?)
- Proton suppression at y=0: marginal statistics but probably publishable (+40°?: need more clever PID)
- Suppression more sensitive to Npart?: Double cut

ZDC vs Tile ADC for dAu

ZDC vs BB

Multiplicity

"Centrality" Cut

FIG. 8: Charged particle multiplicity distributions at six centrality bins of 0 - 10 - 20 - 40 - 60 - 80 - 100% when the centrality is determined from a) the impact parameter or b) N_{ch} within $-1 < \eta < 1$. Dashed curves represent results when the centrality is determined from N_{part}.

Momentum spectra ("central" / "peripheral" at 40deg.)

High-pt "suppression" in dAu?

N_{part} and N_{bin}

• We need a table for d-Au

Resolution of Centrality Cut

Centrality (%)	RMS/ <n<sub>Track(TPM1)></n<sub>
0-10%	1.7%
10-20%	2.4%
20-30%	2.5%
30-40%	3.4%
40-60%	8.9%
60-80%	9.4%

CGC measurement

- Uncertainty in measurement < uncertainty in calculation (20-30%?)
- Q_s changes as function of rapidity

- Measure pt vs y: relying less on absolute predictions

- Checking scale (λ) from HERA
- Measure slope and convexity
- $dN/d\eta$

Although the figure does not provide a quantitative prediction for experiments at RHIC, one should notice non-trivial features. It is predicted that when strongfield effects set in around $Q_s^{(2)}$, the k_{\perp} distribution of secondaries flattens. Not only does the scaling with A_2 differ in the two regimes, as mentioned above, but more importantly the "turnover" point $Q_s^{(2)}(y)$ is a function of rapidity ! Experimentally, one can thus take the rapidity dependence of the saturation momentum from a parametrization of HERA data [19], which also seems to fit the observed rapidity dependence of dN/dy from Au + Au at RHIC [3], and test whether the turnover in the transverse momentum distribution from fig. 1 moves as one changes the *rapidity* in a way consistent with those parametrizations. Dumitru, nucl-th/0203035

But: will the shapes survice after converting gluons into hadrons?

FIG. 2. Transverse momentum distributions of pions produced in a proton–gold collision computed by fragmenting gluons from conventional pQCD (dotted) and from CGC (solid) calculations. The topmost two curves are for y = 0and the other pairs are for y = 2 and y = 3, respectively. The dashed line shows the suggested fit of the pion distribution.

At y~1 (Mid-Rapidity Spectrometer at 40,45 degrees)

- Normalization: N_{trk}(Central)/N_{trk}(Peripheral) =1
- No difference between h^+ and h^-

J.H. Lee (BNL)

How About p_L at y~1 ?

y ~ 2 (Forward Spectrometer at 12 degree)

Rapidity Dependent High-pt Suppressions?

- High-p_T suppressed at 0 < y <2
- Systematic Error ~ 15 25%
- No significant rapidity-dependence within systematics JUNE 2003 Coll. Meeting J.H. Lee (BNL) 18

High-pt p+pbar suppression(?)

•pt ratio of Central/peripheral for p+pbar Normalization: N(central)/N(periperal)=1 ■p and pbar: "0.88"<m2<2.0 to exclude kaons at high p Central: 0-10% Peripheral: <40% +ZDC</p> Sum<1200 High-pt over 2 GeV/c: Flat-tosuppressed Need more statistics at peripheral

Multiplicity vs ZDC

20

High-pt vs Multiplicity/ZDC

Dec. 6 2002

J.H. Lee BRAHMS Collaboration Meeting

High-pt in BRAHMS (with some of my personal point of view)

- dAu: Some Issues: Cold nuclear effect
- CGC measurements in dAu?
- y ≈ 1 not not-interesting (physics doesn't have to be the same as at y=0)
- What can we learn from suppression factors in p_L (can this be sensitive to source profile?)
- Proton suppression: marginal statistics but probably publishable
- Suppression more sensitive to Npart?: Double cut