Reaction Plane/Elliptic Flow Measurements in BRAHMS: Why and How

$\nu 2$ at RHIC is getting more interesting!

- high $v 2$ observed (viscosity, density),
- pt dependence: Hydro+pQCD,

- PID dependent: at $\mathrm{pt}>2 \mathrm{GeV} / \mathrm{c}$ $v 2(\mathrm{p}, \mathrm{pbar})>v 2\left(\pi^{+}, \pi^{-}\right)$? (Hydro: $\left.v 2(\mathrm{p}, \mathrm{pbar})<v 2\left(\pi^{+}, \pi^{-}\right)\right)$
- Pseudo-rapidity dependent: $v 2$ drops too fast? -Hydro (3d) cannot reproduce.
-Need more understanding of physics or measurement?
- Need measurements of $\boldsymbol{v} 2$ (PID,rapidity,pt,centrality)!
- BRAHMS is the only experiment can measure that!

Flow Measurements in BRAHMS:
 How

- Determine reaction plane (r.p.) using charged particle azimuthal distribution - Look at identified particles in the spectrometers as a function of a reaction plane
- strongest signal at $\mathrm{y}=0$ but non flow contribution (jets, resonances) is expected to be highest

v_{2} for High $\mathrm{p}_{\text {t }}$ Particles

See also, M. Gyulassy, I. Vitev and X.N. Wang, nucl-th/00012092

v_{2} is large \ldots but at $p_{t}>2 \mathrm{GeV} / \mathrm{c}$ the data starts to deviate from hydrodynamics

You may wonder anyway...

$\mathbf{d N} / \mathbf{d} \eta$ is broader than $\mathbf{v}_{\mathbf{2}}$ $\mathbf{v}_{\mathbf{2}} \propto \mathbf{P}_{\mathbf{T}} \rightarrow$ Missing measurement $\left\langle\mathbf{P}_{\mathbf{T}}>(\eta)\right.$

How about η dependence?

Naïve expectation \rightarrow Boost invariance

PHENIX

Beam-beam counter (BBC) $|\eta|=\mathbf{3} \sim 4$
64pmts in each BBC charged particles

Dch,PCs,TOF,EMCAL tracking, momentum, PID

$$
\begin{array}{lll}
\eta=-3.5 \text { vs } \eta=+3.5 & \eta=-3.5 \text { vs } \eta=+3.5 & |\eta|=3.5 \text { vs }|\eta|<0.35 \\
\text { (directed }: n=1 \text {) } & \text { (elliptic }: n=2 \text {) } & \text { (elliptic }: \mathbf{n}=2 \text {) }
\end{array}
$$

charged multiplicity

mid-rapidity v2

elliptic event anisotropy around the mid-rapidity \rightarrow Jet?! (non-flow)
"normal" elliptic flow with respect to the true reaction plane

We need detectors

- Need to measure $v 2$ in Run4
- Not much time to make new
- Reconfiguring Si
- Modified BB?
- (Damaged Silicon, Multiplicity/Centrality Issues,
- Background in Spectrometers)
- New detector at MRS? Any Ideas
- Adding pizza shape scintillator detectors with fibers?

- 16-24 segmentations
- Cover $\sim 1-1.5$ unit of h at $\sim 3-4$ ($\mathrm{dN} / \mathrm{dh} \sim 200$ for $20-30 \%$ at $\mathrm{y} \sim 3.5 \sim 10 /$ slice)
- 2 sides preferred
- Tile worked. Light design.
- Shouldn't be much problem for BB
- Problem for FS? (lighter than trigger counter)
- Need simulations
- Can serve as extra centrality detector

