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I The datawe have analyzed Lome

Angle Fields Trigger 6
90 700 A/B —
60 500 A/B —
40 1000 A/B —
35 700 A/B —

| will present data from 35° and 40°, the rest is currently being
analyzed but is more tricky due to lower statistics.
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ldentify a proton in the MRS
Assume all other tracks in TPM1 are pions

See if the tracks cross in a reasonable place
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If so, use the collision vertex, secondary vertex, tracks and
momentum conservation to calculate the invariant mass of the
mother particle

°

Make a mixed—event background (same as above, but with a
proton from one event and a TPM1 pion candidate from
another event)

® Normalize BG to the tail of the data distribution, subtract BG

from data

® Look for a signal peak at ~ mj. ..



| How dowe find As? ST

Invariant mass:

(0) mi=m§+m3—pi+\/m%+p§+\/m%+p%

Cuts applied:

® Track separation — do the tracks really cross?
Decay position — is it between the coll. vertex and TPM1?
Planarity — does it all happen in a plane?

e o b

Proton momentum — higher p, means lower statistics but a

cleaner sample



| Secondaryvertex determinatign™
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“Decaypoint” = the midpoint of the shortest line between the proton
and pion tracks. There are cuts applied both to

® smallest distance in X
® J|ongest distance from the collision vertex



| Data: 35, B field =

Proton momentum > 2GeV I
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| Data; 35°, B field
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| Data: 35, B field =

Proton momentum > 2.5GeV I



| Data: 35, B field =

Proton momentum > 3GeV I
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| How to.calculatea ratio ST

na A density of As in phase space covered by A setting.
Observed number of As in setting A can be expressed:

b
N{A =na,a - Acca A - Nepts,a

where Accy a IS the acceptance for As in the A setting.
Calculate the ratio:

b b _ _ _ _
N/%Af ) NKBS . nA,A ) ACCA,A ) Nevts,A ’ ’n’A,B ’ ACCA,B : Nevts,B

NQYs - N2k np A -Acca,a - Nepts,a - naAB - AccaA B - Nevts,B

The numbers of events cancel directly.
Acceptance of particle in setting A = Acceptance of
antiparticle in setting B:

Accy g = Accpa,a; Accy o = Accp B I



| How to.calculatea ratio

BRAHMS

The regions of phase space covered by settings A and B are
significantly:

approximately equal so that the particle densities do not change

NAA = A B (= nA)§

nga ~ngp (=ng)
The ratio of observed antiparticles/particles gives:

obs obs
Nza V3B

2
NX%‘S na

and an approximate A/A ratio can be found very simply:

obs
NAA

. N\Jobs
NAB

_ Nobs . p\Jobs 1/2
A AA “‘YAB
Vg
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| Ratios— what do we expect 2. "=

If the As are produced by a thermal source we may expect that
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A/Aratiosat yy ~ 1.1
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y—p; distrib utions ey

The y—p; of VOs at 35°. Again, sighal —m. e. BG is used. I
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I Acceptancemaps =

o Throw a wide distribution of As In
GEANT

s A\ reconstructible Iff it makes a proton
in TPM1, TPM2 and TOFW and a
pion in TPML1.

» Make maps for all settings, vertex

intervals etc.
s Production under ways.. . I
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| Next: Yields

» Multiply data with acc plot

s May have use very wide bins in y—p;
because of low statistics

» Need an estimate of the

reconstruction efficiency
s ...Stay tuned!
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