

Bjorn H. Samset

bjornhs@fys.uio.no

University of Oslo

BRAHMS Collaboration Meeting, BNL, 6th–8th December 2002

 Λ s'r'us, Bjorn H. Samset – p.2/19

Currently available data

- Currently available data
- Status plots and results

- Currently available data
- Status plots and results
- Future prospects

Angle	Fields	Trigger 6
90	700 A/B	-
60	500 A/B	-
40	1000 A/B	_
35	700 A/B	-

I will present data from 35° and 40°, the rest is currently being analyzed but is more tricky due to lower statistics.

 Λ s'r'us, Bjorn H. Samset – p.4/19

- Identify a proton in the MRS
- Assume all other tracks in TPM1 are pions

- Identify a proton in the MRS
- Assume all other tracks in TPM1 are pions
- See if the tracks cross in a reasonable place

- Identify a proton in the MRS
- Assume all other tracks in TPM1 are pions
- See if the tracks cross in a reasonable place
- If so, use the collision vertex, secondary vertex, tracks and momentum conservation to calculate the invariant mass of the mother particle

- Identify a proton in the MRS
- Assume all other tracks in TPM1 are pions
- See if the tracks cross in a reasonable place
- If so, use the collision vertex, secondary vertex, tracks and momentum conservation to calculate the invariant mass of the mother particle
- Make a mixed-event background (same as above, but with a proton from one event and a TPM1 pion candidate from another event)

- Identify a proton in the MRS
- Assume all other tracks in TPM1 are pions
- See if the tracks cross in a reasonable place
- If so, use the collision vertex, secondary vertex, tracks and momentum conservation to calculate the invariant mass of the mother particle
- Make a mixed—event background (same as above, but with a proton from one event and a TPM1 pion candidate from another event)
- Normalize BG to the tail of the data distribution, subtract BG from data

- Identify a proton in the MRS
- Assume all other tracks in TPM1 are pions
- See if the tracks cross in a reasonable place
- If so, use the collision vertex, secondary vertex, tracks and momentum conservation to calculate the invariant mass of the mother particle
- Make a mixed—event background (same as above, but with a proton from one event and a TPM1 pion candidate from another event)
- Normalize BG to the tail of the data distribution, subtract BG from data
- Look for a signal peak at $\sim m_{\Lambda} \dots$

Invariant mass:

(0)
$$m_{\Lambda}^2 = m_p^2 + m_{\pi}^2 - p_{\Lambda}^2 + \sqrt{m_p^2 + p_p^2} + \sqrt{m_{\pi}^2 + p_{\pi}^2}$$

Cuts applied:

- Track separation do the tracks really cross?
- Decay position is it between the coll. vertex and TPM1?
- Planarity does it all happen in a plane?
- Proton momentum higher p_p means lower statistics but a cleaner sample

Secondary vertex determination

35°

40^o

"Decaypoint" = the midpoint of the shortest line between the proton and pion tracks. There are cuts applied both to

- smallest distance in x
- Iongest distance from the collision vertex

Proton momentum $\geq 2GeV$

 Λ s'r'us, Bjorn H. Samset – p.8/19

Data: 35°, B field

Proton momentum $\geq 2GeV$

Proton momentum $\geq 2.5 GeV$

Proton momentum $\geq 3GeV$

Rates per event

 $\begin{array}{ccc} 35^o & 40^o \\ \mbox{For a reasonable cut in p_p we see $\sim 0.5 \frac{\Lambda}{event}$ at 35 o and $\sim 0.3 \frac{\Lambda}{event}$ at 40 o \end{array}$

 Λ s'r'us, Bjorn H. Samset – p.11/19

 $n_{\Lambda,\mathbf{A}}$: density of Λ s in phase space covered by A setting. Observed number of Λ s in setting A can be expressed:

$$N_{\Lambda \mathbf{A}}^{obs} = n_{\Lambda, \mathbf{A}} \cdot \operatorname{Acc}_{\Lambda, \mathbf{A}} \cdot N_{evts, \mathbf{A}}$$

where $Acc_{\Lambda,A}$ is the acceptance for Λs in the A setting. Calculate the ratio:

$$\frac{N_{\bar{\Lambda}\mathbf{A}}^{obs} \cdot N_{\bar{\Lambda}\mathbf{B}}^{obs}}{N_{\Lambda\mathbf{A}}^{obs} \cdot N_{\Lambda\mathbf{B}}^{obs}} = \frac{n_{\bar{\Lambda},\mathbf{A}} \cdot \operatorname{Acc}_{\bar{\Lambda},\mathbf{A}} \cdot N_{evts,\mathbf{A}} \cdot n_{\bar{\Lambda},\mathbf{B}} \cdot \operatorname{Acc}_{\bar{\Lambda},\mathbf{B}} \cdot N_{evts,\mathbf{B}}}{n_{\Lambda,\mathbf{A}} \cdot \operatorname{Acc}_{\Lambda,\mathbf{A}} \cdot N_{evts,\mathbf{A}} \cdot n_{\Lambda,\mathbf{B}} \cdot \operatorname{Acc}_{\Lambda,\mathbf{B}} \cdot N_{evts,\mathbf{B}}}$$

The numbers of events cancel directly. Acceptance of particle in setting A = Acceptance of antiparticle in setting B:

$$\operatorname{Acc}_{\overline{\Lambda},\mathbf{B}} = \operatorname{Acc}_{\Lambda,\mathbf{A}}; \quad \operatorname{Acc}_{\overline{\Lambda},\mathbf{A}} = \operatorname{Acc}_{\Lambda,\mathbf{B}}$$

BRAHMS

The regions of phase space covered by settings A and B are approximately equal so that the particle densities do not change significantly:

$$n_{\Lambda,\mathbf{A}} \approx n_{\Lambda,\mathbf{B}} \ (= n_{\Lambda}); \quad n_{\bar{\Lambda},\mathbf{A}} \approx n_{\bar{\Lambda},\mathbf{B}} \ (= n_{\bar{\Lambda}})$$

The ratio of observed antiparticles/particles gives:

$$\frac{N_{\bar{\Lambda}\mathbf{A}}^{obs} \cdot N_{\bar{\Lambda}\mathbf{B}}^{obs}}{N_{\Lambda\mathbf{A}}^{obs} \cdot N_{\Lambda\mathbf{B}}^{obs}} \approx \left(\frac{n_{\bar{\Lambda}}}{n_{\Lambda}}\right)^2$$

and an approximate $\bar{\Lambda}/\Lambda$ ratio can be found very simply:

$$\frac{n_{\bar{\Lambda}}}{n_{\Lambda}} \approx \left(\frac{N_{\bar{\Lambda}\mathbf{A}}^{obs} \cdot N_{\bar{\Lambda}\mathbf{B}}^{obs}}{N_{\Lambda\mathbf{A}}^{obs} \cdot N_{\Lambda\mathbf{B}}^{obs}}\right)^{1/2}$$

If the Λ s are produced by a thermal source we may expect that

(-5)

$$\overline{\frac{\Lambda}{\Lambda}} = \frac{\overline{p}}{p} \cdot \frac{K^+}{K^-}$$

If the Λ s are produced by a thermal source we may expect that

(-5)

$$\frac{\overline{\Lambda}}{\overline{\Lambda}} = \frac{\overline{p}}{p} \cdot \frac{K^+}{K^-}$$

 Λ s'r'us, Bjorn H. Samset – p.14/19

 Λ/Λ ratios at $y_{\Lambda} \approx 1.1$

35°

40^o

 Λ s'r'us, Bjorn H. Samset – p.15/19

y $-p_t$ distributions

The y– p_t of V0s at 35°. Again, signal – m. e. BG is used.

 Λ s'r'us, Bjorn H. Samset – p.16/19

■ Throw a wide distribution of As in GEANT

- Throw a wide distribution of As in GEANT
- A reconstructible iff it makes a proton in TPM1, TPM2 and TOFW and a pion in TPM1.

- Throw a wide distribution of As in GEANT
- A reconstructible iff it makes a proton in TPM1, TPM2 and TOFW and a pion in TPM1.
- Make maps for all settings, vertex intervals etc.

- Throw a wide distribution of As in GEANT
- A reconstructible iff it makes a proton in TPM1, TPM2 and TOFW and a pion in TPM1.
- Make maps for all settings, vertex intervals etc.
 Production under ways...

Acceptance from GEANT, 35°

Multiply data with acc plot

 Λ s'r'us, Bjorn H. Samset – p.19/19

- Multiply data with acc plot
- May have use very wide bins in $y-p_t$ because of low statistics

- Multiply data with acc plot
- May have use very wide bins in $y-p_t$ because of low statistics
- Need an estimate of the reconstruction efficiency

- Multiply data with acc plot
- May have use very wide bins in y-p_t
 because of low statistics
- Need an estimate of the reconstruction efficiency
- ...stay tuned!