Centrality Dependence of identified hadrons at mid-rapidity

Eun-Joo Kim BNL

Overview

- Brief review of analysis
- Identified charged hadron spectra
- <dN/dy>, <pt> vs centrality(Npart)
- Hadron spectra etc...
- Particle ratios (pt, Npart)

Event/Track Selection

- All MRS 90 degree data set
 - -> run4692 run5983
 - -> BB, TPC, TOFW, BbVertex calibration
- No specific Trigger selection
- Centrality cut from latest calibration from DB
- Select Good MrsTracks
- Magnet Fiducial cut : 1cm (x,y) from edge
- Run-by-Run fitting
 - Diff(Vzdc-Vbb) : 4σ cut
 - matching (Dang,Dy,Daly,Ty) : 3σ cut

Acceptance Map

- Flat distributions : p, θ
 -> 10M at each setting
 -> -17.5cm < z <17.5cm, Δz = 5cm
- New TPM2 geometry for 2001 data setting
- Selection : same as used in data
 -> remove bad TOFW slats
 - -> Magnet Fiducial cut : 1cm (x,y)
- y-mt, y-pt map for π , K, p
 - -> Acceptance values below 4.5(5.5) are applied to data. (reduce edge effect)

Corrections

- Track-by-Track corrections
- TPC efficiency : ~ 89%, 96%
 -> as a function of # of clusters
- TOFW : remove bad slats
- Corrections for particle species
 - -> Multiple scattering : π , K, p
 - -> Decay correction : π , K
 - -> Absorption : pbar
 - -> as a function of momentum

PID

New PID function from JH
> can we use as a weight ?
> can we extend momentum?
> be careful of use weight above 1.5~2.0

Identified Hadron Spectra

- Fit by mt exponential function
 - -> π (0.15 < ($m_t m_p$) < 1.66)
 - -> K (0.2 < (mt mk) < 1.4)
 - -> p ($0.2 < (m_t m_\pi) < 2.0$)
- Fit by Boltzmann function
 - -> yield, slope is smaller than mt exp fit for π (~85%), K(~92%)
 ->similar for p(~97%) yield

π Spectra

K Spectra

p,pbar Spectra

dN/dy per participant at y=0

- For all the particle species, the yield per participant increase with Npart.
- K±, p, pbar yields per participant rise faster than π± yield.

Dependence of Net proton on <Npart>

<pt> for π , K, p

- <pt> for all particle species increase from peripheral to central evens.
- The slopes of the π,K mt spectra flatten with centrality, T(π)~240MeV, T(K) ~300MeV.
- The slopes of p,pbar are not flat.
 - -> ~360MeV (0-10%)
 - -> ~342MeV (10-20%)
 - -> ~335MeV (20-40%),
 - -> ~315MeV (40-60%).

Hadron Spectra

- Pt distribution of charged hadron specta were fit by the power law function, ~C/(1+pt/p0)**n, 0.2<pt<4.0 GeV/c.
- dN/dη, <pt> values are obtained from fit paramters,
 <pt>=2p0/(n-3)

$dN/d\eta$, <pt>, etc vs Npart

- dN/dη/Npart and <pt> slightly increase from peripheral to central events.
- The ratio of central (0-10%) peripheral (40-60%) collisions rises below pt ~2.5GeV/c and decreases at high pt.

pbar/p ratios

- The ratio for central events(0-10%) are almost flat over 0.5<pt<3.5GeV/c.
- R(central)~R(peripheral)

pbar/ π -, p/ π + ratios

 pbar/π-, p/π+ ratios show the centrality dependence. The ratios in central events reaches 0.8~0.9 at 2GeV/c, while in peripheral events the ratios are up to 0.4~0.5.

Plan

- Finish 130GeV data reduction
 - before Christmas
 - I will start TOFW calibration tomorrow
 - compare with 200GeV data (proton, anti-proton spectra)
- Try to fit other function on 200GeV data
- Try to analyze MRS(y=1) data?
- We need more statistics, as always