1 Centrality.

Figure 1: Centrality definition. $|z_o| \leq 30cm$.

2 Raw Data. Big Tubes

Figure 2: $dN_{ch}/d\eta$ vs. η . Raw Data. Big Tubes. $|z_o| \leq 150 cm$.

3 Background subtraction

Figure 3: $dN_{ch}/d\eta$ vs. η . GEANT Raw Data. Big Tubes. $|z_o| \le 150 cm$.

$$k = rac{(dN_{ch}/d\eta)_{HIJING; \ No \ Background}}{(dN_{ch}/d\eta)_{HIJING; \ With \ the \ Background}}$$

4 Big Tubes. $dN_{ch}/d\eta$

Figure 4: $dN_{ch}/d\eta$ vs. η . Big Tubes. $|z_o| \leq 150 cm$.

5 Small Tubes

Figure 5: Nonlinearity in Small Tubes.

5.1 "Empty Boxes"

$$P(n) = \frac{\lambda^n e^{-\lambda}}{n!}, \qquad \qquad \frac{\# \text{ of } No \text{ hits}}{Total \text{ Number of Events}} = e^{-\lambda}$$

Figure 6: $dN_{ch}/d\eta$ vs. η . Small Tubes. "No hits". $|z_o| \leq 150 cm$.

5.2 Nonlinearity correction

Figure 7: Nonlinearity Function for Small Tubes: $n_{new} = n_{old} \cdot F(n)$

Figure 8: Nonlinearity corrections for Small Tubes.

Figure 9: $dN_{ch}/d\eta$ vs. η . Small Tubes after the Nonlinearity Correction. $|z_o| \leq 150 cm$.

6 Systematic Errors

- Vertex precision $\simeq 1.0\%$
- Poisson distribution $\simeq 1.0\%$
- Individual differences $\simeq 4.9\%$
- Al thickness $\simeq 2.0\%$
- Centrality definition $\simeq 2.0\%$
- δ -rays $\simeq 1.0\%$
- GEANT

Total Systematic Error – $\sim 10\%$

7 Final distribution

Figure 10: $dN_{ch}/d\eta$ vs. η . Methods Comparison. Central Events. $|z_o| \leq 150 cm$.

Figure 11: $dN_{ch}/d\eta$ vs. η . Beam-Beam Counters. Final Average.