Kaon Production in d+Au and p+p Collisions at $\sqrt{s_{NN}} = 200 \ GeV$

Hongyan Yang Department of Physics and Technology University of Bergen, Norway

for the BRAHMS Collaboration

Hongyan Yang, Kaon production in d+Au and pp collisions at $\sqrt{s_{NN}} = 200~GeV$, SQM2006/UCLA, March 26-31

Outline

BRAHMS Experimental Setup

- ★ experimental setup
- ★ data selection
- \star particle identification

Data Analysis and Results

- ★ identified particles' spectra
- ★ rapidity dependence of effective temperature
- ★ rapidity dependence of net proton yields
- ★ particle ratios
- \star R_{CP} in d+Au system

Summary and Outlook

1/17

BRAHMS Experimental Setup

BRAHMS Experimental Setup

Figure 1: Schematic top view of the BRAHMS detector

Data Selection

data selection

- \star d+Au collisions at $\sqrt{s_{NN}}=200~GeV$ in Run03: 3.4>y>-0.1
- ★ pp collisions at $\sqrt{s} = 200 \ GeV$ in Run05: 4.0 > y > 0

event and track selection

- ★ MB events in both d+Au and pp collisions are used for this analysis, for d+Au, events with different centralities (central, semi-central, and peripheral) are used;
- ★ IP determination: BB counter for d+Au, and INEL counter in pp, using wide vertex cut for MB events selection and 3- σ cut on the (VtxTrkZ-VtxZ)

particle identification (see next slide)

- **\star** RICH in FS: Ring Radius VS Momentum (3- σ cuts on ring radius)
- ★ TOF in MRS: Mass² VS Momentum (3- σ cuts on m^2)

Particle Identification(1)

Figure 2: Particle identification by RICH in FS: 25-30 GeV/c for particle separation

Particle Identification(2)

Figure 3: Particle identification by TOFW in MRS: m^2 VS $charge \times momentum$ separate kaons and pions up to 2 GeV/c, and 3 GeV/c for kaons and protons

m_T spectra

Figure 4: m_T spectra of identified particles in pp collisions

rapidity dependence of effective temperature in pp

Figure 5: Effective temperatures are extracted by an m_T exponential fit of the m_T spectra

Stopping (1)

Figure 6: net proton rapidity density in pp collisions, and comparison with HIJING/B and PYTHIA model

Stopping (2)

Figure 7: net proton rapidity density in d+Au collisions

particle ratios (1)

Figure 8: rapidity dependence of π^-/π^+ , K^-/K^+ and \bar{p}/p in pp collisions

particle ratios (2)

Figure 9: rapidity dependence of K/π ratios in pp collisions

particle ratios (3)

Figure 10: rapidity dependence of p/π ratios in pp collisions

 R_{CP} in d+Au collisions

Figure 11: centrality and rapidity dependence of R_{CP} in d+Au collisions

Summary and Outlook

- a decreasing of effective temperature extracted from m_T spectra of all hadrons is observed when goes to forward rapidity;
- we have a lot of net-proton in the most forward region (pp collisions), which is consistent with the
 prediction by PYTHIA, and HIJING/B did underestimate the net-proton production in the forward
 region; the tendency of the production of net-proton rapidity density is consistent with the results by
 NA35 at SPS energies;
- the K/π ratios in pp collisions are lower at more forward rapidity, and the K^-/π^- ratios are lower than K^+/π^+ ;
- the p/π^+ and \bar{p}/π^- ratios show significant difference at forward rapidity;
- Cronin effect plays more important role in more central collisions, and the suppression of R_{CP} for all the identified particles at forward rapidity are observed, and no specie dependence of this suppression is seen.
- R_{dAu} may provide more information about nuclear effect to be done.

BRAHMS Collaboration

I. Arsene^{11,3,13}, I. G. Bearden⁸, D. Beavis¹, S. Bekele¹², C. Besliu¹¹, B. Budick⁷, H. Bøggild⁸, C. Chasman¹, C. H. Christensen⁸, P. Christiansen⁸, R. Debbe¹, J. J. Gaardhøje⁸, K. Hagel⁹, H. Ito¹, A. Jipa¹¹, E.B.Johnson¹², F. Jundt², J. I. Jørdre¹⁰, C. E. Jørgensen⁸, R. Karabowicz⁶, E. J. Kim^{1,12}, T. M. Larsen^{8,13}, J. H. Lee¹, Y. K. Lee⁵, S. Lindahl¹³, G. Løvhøiden¹³, Z. Majka⁶, M. J. Murray¹², J. Natowitz⁹, B. S. Nielsen⁸, D. Ouerdane⁸, R. Planeta⁶, F. Rami², C. Ristea^{8,11}, O. Ristea¹¹, D. Röhrich¹⁰, B. H. Samset¹³, S. J. Sanders¹², R. A. Scheetz¹, P. Staszel⁸, T. S. Tveter¹³, F. Videbæk¹, R. Wada⁹, H. Yang¹⁰, Z. Yin¹⁰, I. S. Zgura³

1. Brookhaven National Laboratory, Upton, New York, USA

Institut de Recherches Subatomiques et Université Louis Pasteur, Strasbourg, France

 Institute of Space Science, Bucharest-Magurele, Romania
 Institute of Nuclear Physics, Krakow, Poland
 Johns Hopkins University, Baltimore, USA

 M. Smoluchkowski Institute of Physics, Jagiellonian University, Krakow, Poland

 New York University, New York, USA
 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
 Texas A&M University, College Station, Texas, USA
 University of Bergen, Department of Physics, Bergen, Norway

 University of Kansas, Lawrence, Kansas, USA

 University of Oslo, Department of Physics, Oslo, Norway

Thank you!