Transverse and Longitudinal Dynamics at RHIC

Paweł Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University

SQM 2007 Levo**č**a, 24-29.06.2007

- General (bulk) characteristics of nucleus-nucleus reactions.
- Nuclear effects at mid- and forward rapidity (R_{AA} and p/π)
- Elliptic Flow
- Testing pQCD at large rapidities in p+p
- Summary.

2

BRAH

Particle production and energy loss

>5.0 GeV/fm³ for AuAu @ 200 GeV
>4.4 GeV/fm³ for AuAu @ 130 GeV

>3.7 GeV/fm³ for AuAu @ 62.4 GeV

Primary versus produced matter

- Iongitudinal net-kaon evolution similar as net-proton in |y|< 3 at RHIC (AuAu @ 200 GeV)
- strong "association": net-kaon / net-lambda /net-proton?

P. Staszel - Jagiellonian University, Kraków SQM 2007, Levoča 2007

Nuclear effects

R_{AA}<1 ↔ Suppression relative to scaled NN reference

P. Staszel - Jagiellonian University, Kraków SQM 2007, Levoča 2007

Energy and system dependent nuclear modification factors at h~0 and 1

R _{AuAu} (200 GeV) < R_{AuAu}(63 GeV) < R_{CuCu}(63 GeV) for charged hadrons
 p+p at 63 GeV is ISR Data (NPB100), RHIC-Run6 will provide better reference

P. Staszel - Jagiellonian University, Kraków SQM 2007, Levoča 2007

$R_{AuAu}(y=0) \sim R_{AuAu}(y\sim3)$ for central Au+Au at $\sqrt{s} = 200 \text{ GeV}$

R AuAu (y=0) ~ RAuAu (y~3) for pions and protons: accidental?
 Papidity dependent interplay of Medium offect + Hydro + baryon trans

Interpretation of suppression at forward y

Strong energy absorption model - static 2D source. (Insprired by A.Dainese (Eur.Phys.J C33,495) and A.Dainese, C.Loizides and G.Paic (hep-ph/0406201))

- Parton spectrum using pp reference spectrum
- Parton energy loss dE ~ q.L**2
- q adjusted to give observed R_{AA} at h~1.

The change in dN/d η will result in slowly rising R_{AA} .

The modification of reference pp spectrum causes the R_{AA} to be approximately constant as function of η .

K/ π ratios at y~1 and y~3, Au+Au @200GeV

 K^{-}/π^{-}

 K^+/π^+

At y~0 negative and positive ratios behave similar

K⁻/ π^- decreases by factor of 2/3 when going from y~0 to y~3, however, enhancement over p+p increases. In accord to pbar/ π^-

K⁺/ π^+ at y~0 is similar that at y~3, however, enhancement over p+p increases

BRAHM

P. Staszel - Jagiellonian University, Kraków SQM 2007, Levoča 2007

Examine d+Au at all rapidities

R_{dAu} centrality dependence for π^+

40-80%

BRAHMS

At y~3 R_{dAu} for π^+ reflects stronger suppression for more central collisions – same trend as for h⁻

P. Staszel - Jagiellonian University, Kraków SQM 2007, Levoča 2007

Differential flow at forward rapidity

Hydro calculations (red symbols) by T. Hirano

P. Staszel - Jagiellonian University, Kraków SQM 2007, Levoča 2007

p+p at 200GeV - examine pQCD at large y

PRL 98 (2007) 252001

Large y: pQCD versus data

 $\mu=\mu F=\mu R=p_T$. CTEQ6 parton distribution functions. KKP modified to obtain FFs for specific charges: $D^{n+}_{u} = (1+z)D^{n0}_{u}$; $D^{n-}_{u} = (1-z)D^{n0}_{u}$ AKK reproduce STAR p+pbar at y~0, at large y gluons contribute in > 80% KKP under predict p+pbar by factor of 10.

Does baryon number transport extend to high p_T ?

p+p @ 62GeV results

- K/p reflects stronger enhancement at forward rapidity as compared to mid-rapidity.
- K⁻/ π ⁻ drops when going form mid to forward rapidity whereas K⁺/ π ⁺ shows weak dependency on rapidity
- R_{dAu} for π^+ decreases with increasing centrality and for 0-20% centrality reaches value of ~0.5 (3 < p_T < 4)

RRAH

Summary for p+p

• At 200 GeV pbar/p is below 0.1 at high p_T (~4GeV/c) and y~3.

• This strong asymmetry in p and pbar production can not be described by known FFs.

•Explanation of data require new mechanism that will be able to transport baryon number to high p_T (recombination soft-shower?)

• At the same y but lower energy (62GeV) the effect is stronger by an order of magnitude (both for kaons and protons)

BRAH

The BRAHMS Collaboration

I.Arsene⁷, I.G. Bearden⁶, D. Beavis¹, S. Bekele⁶, C. Besliu⁹, B. Budick⁵,
H. Bøggild⁶, C. Chasman¹, C. H. Christensen⁶, P. Christiansen⁶, R. Clarke⁹, R.Debbe¹,
J. J. Gaardhøje⁶, K. Hagel⁷, H. Ito¹⁰, A. Jipa⁹, J. I. Jordre⁹, F. Jundt², E.B. Johnson¹⁰,
C.E.Jørgensen⁶, R. Karabowicz³, N. Katry**ń**ska³, E. J. Kim⁴, T.M.Larsen¹¹, J. H. Lee¹,
Y. K. Lee⁴, S.Lindal¹¹, G. Løvhøjden², Z. Majka³, M. Murray¹⁰, J. Natowitz⁷, B.S.Nielsen⁶,
D. Ouerdane⁶, R.Planeta³, F. Rami², C. Ristea⁶, O. Ristea⁹, D. Röhrich⁸,
B. H. Samset¹¹, D. Sandberg⁶, S. J. Sanders¹⁰, R.A.Sheetz¹, P. Staszel³,
T.S. Tveter¹¹, F.Videbæk¹, R. Wada⁷, H. Yang⁶, Z. Yin⁸, and I. S. Zgura⁹

 ¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland, ⁴Johns Hopkins University, Baltimore, USA, ⁵New York University, USA ⁶Niels Bohr Institute, University of Copenhagen, Denmark ⁷Texas A&M University, College Station. USA, ⁸University of Bergen, Norway ⁹University of Bucharest, Romania, ¹⁰University of Kansas, Lawrence,USA ¹¹ University of Oslo Norway

48 physicists from 11 institutions