Forward Physics with BRAHMS at RHIC

Dieter Roehrich University of Bergen

BRAHMS collaboration

Physics at forward rapidities

- systems
 - p+p at 200 and 62 GeV
 - d+Au collisions at 200 GeV
 - Au+Au collisions
- observables
 - pt-spectra
 - nuclear modification factor

Introduction

Forward rapidity at RHIC collider at 200 GeV offers insight into pp, dA and AA:

- low-x region (for target like p, A)
- probing larger x_F region where kinematic constraints may be important
- opportunities to study if pQCD works at RHIC energies at large rapidities
- energy loss of partons in dense matter (central AA collisions)

Kinematics

RHIC example

- At 4° (y~3 for pions) and $p_T=1$ GeV/c one can reach values as low of $x_2 \sim 10^{-4}$
- This is a lower limit, not a typical value: most of the data collected at 4°

Parton Distribution Function

Measurements at high rapidity set the dominant parton type:

- projectile (x₁ ~1) mostly valence quarks
- target (x₂<0.01) mainly gluons

How well does NLO pQCD work at RHIC and at large rapidities?

Are there effects from small-x at large y?

Experiment

pp at 200 GeV – stopping

Net-proton rapidity distribution

• Despite large systematic uncertainties better agreement with the baryon transport in HIJING/B

pp at 200 GeV – midrapidity

$$pp \to \pi^0 X$$

- NLO pQCD can reproduce the data at RHIC energies
- The fragmentation functions differ by the amount of $g -> \pi$

pp at 200 GeV – forward rapidity (1)

Calculations done by W. Vogelsang. Only one scale $\mu=p_T$ and the same fragmentation functions as used for the PHENIX comparison. KKP has only π^0 fragmentation. Modifications were needed to calculate charged pions. KKP FF does a better job compared to Kretzer, π and kaon production still dominated by gg and gq at these rapidities apart from the highest p_T No agreement with proton data

S

pp at 200 GeV – forward rapidity (2)

Ratios p/π at y=3.0 and 3.3

- Excess of positive pions: ratio ->1/2 (valence quark counting)
- Small p/p ratio eliminates possible strong g -> p or \overline{p} fragmentation
- The difference between protons and anti-protons indicates that fragmentation (as AKK) is not the dominant mechanism

9

Conclusions – pp at 200 GeV

rapidity dependence

- NLO pQCD describes data at all rapidities at 200 GeV
- mKKP fragmentation function reproduces the pion and kaon production. This agreement implies a dominance of gq and gg processes at these high rapidities as was the case for the measurements of neutral pions at midrapidity.
- But:

large proton/pion ratio at intermediate/high pt at large y?

pp at 62 GeV – forward rapidity

π^- spectra at forward rapidities

- Comparison of NLO pQCD calculations (Vogelsang) with BRAHMS data at high rapidity. The calculations are for KKP and a scale factor of μ=p_t.
- The agreement is surprisingly good in view of analysis of slightly lower ISR data at large y which failed to describe π^0 at larger x_F.

Initial and final effects – dAu at 200 GeV

12

Charged hadrons – R_{dAu} at different pseudorapidities

BRAHMS: PRL 93, 242303 (2004)

$$R_{dAu} = \frac{1}{\langle N_{coll} \rangle d^2 N^{d+Au}/dp_T d\eta}$$

where $\langle N_{coll} \rangle = 7.2\pm0.3$

- Cronin-like enhancement at η=0
- Clear suppression as η changes from 0 to 3.2

Charged hadrons – centrality dependence of enhancement/suppression in d+Au

BRAHMS: PRL 93, 242303 (2004)

- R_{cp} is a similar ratio but with peripheral collisions used as a reference
- Change of R_{CP} from mid- to forward rapidities is stronger for central collisions than for semi-peripheral collisions

R_{dAu}: pions, kaons and protons (y=3)

Figure 2. R_{dAu} of π^+ , K^+ and protons at forward rapidity y = 3.0 in minimum bias d+Au collisions ($\langle N_{coll} \rangle = 7.2$). A 8% systematic error is included.

- R_{dAu}
 - Suppression for π and K consistent with charged hadrons
 - Less suppression for protons

Experimental facts – dAu at RHIC

- At midrapidity
 - Cronin enhancement observed for several particle species in R_{dAu} and R_{CP} (magnitude differs by a factor of 2)
 - Cronin effect (baryons) > Cronin effect (mesons)
- At forward rapidities
 - Increasing suppression of charged hadrons, h⁻, π^+ , π^0 ,K⁺ with increasing (pseudo)rapidity
 - less suppression of protons

CGC saturation model (1)

• CGC describes dn/d η and π^0 inv. CS at forward rapidities

CGC saturation model (2)

Comparison pQCD vs CGC

- LO pQCD calculation
 - Nuclear shadowing
- CGC

Phenomenological models

Suppression at large x_F

B. Kopeliovich *et al*., hep-ph/0501260; PRC72(2005)054606

- Forward region is dominated by the fragmentation of valence quarks
- Induced energy loss via increased gluon bremsstrahlung in cold nuclear matter
- Momentum conservation forbids particle production at $x_F \rightarrow 1$

Conclusions (dAu)

- Suppression phenomena at forward rapidities at RHIC energies
- The suppression and in particular the inversion vs. centrality of R_{dAu} at high rapidity may be a signature for the gluon saturation and the small-x evolution. The x-range probed is in range of 10⁻³ - 10⁻²
- Alternate explanations e.g. in terms of Sudakov suppression works quite well too

Final state effects – A+A collisions

Gallmeister et al., PRC67 (2003) 044905	Hadronic absorption of fragments
Nonaka, Bass, nucl-th/0301078	
Lin, Ko, PRL89 (2002) 202302	Parton recombination (up to moderate p_T)
R. Hwa et al., nucl-th/0501054	
Gyulassy, Wang, Vitev, Baier, Wiedemann e.g. nucl-th/0302077	Energy loss of partons in dense matter

R_{AuAu}: charged hadrons – Au+Au at 200 GeV (midrapidity)

- Nuclear modification factor
 - Strong suppression of hadron production at intermediate/high pt in central Au+Au collisions

Matter at forward rapidity (1)

Matter at forward rapidity (2)

Drastic change of antiproton/pion ratio

R_{AuAu}: charged hadrons – Au+Au at 200 GeV

• **NO** change of R_{AuAu} with rapidity

R_{AuAu}: identified hadrons – Au+Au at 200 GeV midrapidity vs η=3.2

pions

protons

- Strong pion suppression
- **NO** change of R_{AuAu} with rapidity

Opacity at forward rapidity

G. G. Barnafoldi et al. Eur. Phys. J. C49 (2007)333

pQCD + GLV fit to $R_{AA} \rightarrow L/\lambda$

n = 1.0

- Co-moving dynamics of jet and longitudinally expanding surface of the compressed matter
 - **Initial geometry:** longitudinally contracted dense deconfined zone

Conclusions (AuAu)

- Nuclear modification
 - Strong pion suppression at all rapidities
 - Protons are enhanced at all rapidities (R_{AuAu}) and moderate p_T
 - No dependence of R_{AuAu} on rapidity

- Forward rapidities at RHIC has given additional insight into hadron scattering
- Pion and kaon production in pp well described in pQCD; failure of protons indicates other mechanism
- dAu suppression at high rapidity consistent with saturation picture, but at RHIC energy, x and p_T reach may be too small to decisively settle this LHC is promising for studying low-x physics in great detail covering large x and p_T range
- Strong suppression effects at all rapidities in central Au+Au collisions

The BRAHMS Collaboration

I.Arsene⁷, I.G. Bearden⁶, D. Beavis¹, S. Bekele⁶, C. Besliu⁹, B. Budick⁵,
H. Bøggild⁶, C. Chasman¹, C. H. Christensen⁶, P. Christiansen⁶, R. Clarke⁹, R.Debbe¹,
J. J. Gaardhøje⁶, K. Hagel⁷, H. Ito¹⁰, A. Jipa⁹, J. I. Jordre⁹, F. Jundt², E.B. Johnson¹⁰,
C.E.Jørgensen⁶, R. Karabowicz³, E. J. Kim⁴, T.M.Larsen¹¹, J. H. Lee¹, Y. K. Lee⁴,
S.Lindal¹¹, G. Løvhøjden², Z. Majka³, M. Murray¹⁰, J. Natowitz⁷, B.S.Nielsen⁶,
D. Ouerdane⁶, R.Planeta³, F. Rami², C. Ristea⁶, O. Ristea⁹, D. Röhrich⁸,
B. H. Samset¹¹, D. Sandberg⁶, S. J. Sanders¹⁰, R.A.Sheetz¹, P. Staszel³,
T.S. Tveter¹¹, F.Videbæk¹, R. Wada⁷, H. Yang⁶, Z. Yin⁸, and I. S. Zgura⁹

 ¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland,
 ⁴Johns Hopkins University, Baltimore, USA, ⁵New York University, USA ⁶Niels Bohr Institute, University of Copenhagen, Denmark
 ⁷Texas A&M University, College Station. USA, ⁸University of Bergen, Norway ⁹University of Bucharest, Romania, ¹⁰University of Kansas, Lawrence, USA ¹¹ University of Oslo Norway