Phases of matter in the BRAHMS experiment

Pawe³Staszel, Marian Smoluchowski Institute of Physics Jagiellonian University for the BRAHMS Collaboration

XXXIII International Conference On High Energy Physics Moscow, 26.07 – 2.08.2006

Relativistic Heavy Ion Collider

- 1. Detector setup.
- 2. General (bulk) characteristics of nucleus-nucleus reactions.
- 3. Nuclear modification at mid-rapidity
- 4. Nuclear modification at forward rapidity
- 5. Elliptic Flow
- 6. Summary.

Broad Range Hadron Magnetic Spectrometers

P. Staszel - Jagiellonian University, Kraków ICHEP, Moscow 2006

Particle production and energy loss

>5.0 GeV/fm³ for AuAu @ 200 GeV

>4.4 GeV/fm³ for AuAu @ 130 GeV

>3.7 GeV/fm³ for AuAu @ 62.4 GeV

P. Staszel - Jagiellonian University, Kraków ICHEP, Moscow 2006

Primary versus produced matter

K⁻/K⁺ and antihyperon/hyperon

How $\mu_s = \frac{1}{4} \mu_{u,d}$ will work for hyperons? Hbar/H = (pbar/p)^{3/4} for Lambdas = (pbar/p)^{1/2} for Xis = (pbar/p)^{1/4} for Omegas

High p_t suppression & jet quenching

Particles with high p_t's (above ~2GeV/c) are primarily produced in hard scattering processes early in the collision

p+p experiments \rightarrow hard scattered partons fragment into jets of hadrons

In A-A, partons traverse the medium \rightarrow Probe of the dense and hot stage

If QGP → partons will lose a large part of their energy (induced gluon radiation) → suppression of jet production ↔ Jet Quenching

Experimentally \rightarrow depletion of the high p_t region in hadron spectra

Charged hadron invariant spectra

$\label{eq:RAA} R_{AA} < 1 \leftrightarrow \text{Suppression relative to} \\ \text{scaled NN reference}$

Energy and system dependent nuclear modification factors at h~0 and 1

R _{AuAu} (200 GeV) < R_{AuAu}(63 GeV) < R_{CuCu}(63 GeV) for charged hadrons

• p+p at 63 GeV is ISR Data (NPB100), RHIC-Run6 will provide better reference

Control measurement: d+Au @ $\sqrt{s_{NN}}$ =200

Excludes alternative interpretation in terms of Initial State Effects

 \rightarrow Supports the Jet Quenching for central Au+Au collisions

+ back-to-back azimuthal correlation and jet structure by STAR and PHENIX

Nuclear modification factors (R_{CP} , R_{AuAu}) for p,K,p at y~3.1

- Suppression for pions and kaons: R_{AuAu} : $\pi < K < p$
- $R_{AUAU} \neq Rcp$ (<Ncoll>,<Npart> for 40-60% ~ 70,56)

$R_{AuAu}(Y=0) \sim R_{AuAu}(y\sim3)$ for central Au+Au at $\sqrt{s} = 200$ GeV

R AuAu (Y=0) ~ RAuAu (y~3) for pions and protons: accidental?

Rapidity dependent interplay of Medium effect + Hydro + baryon transport

... more on R_{AA} rapidity dependence

Similar level of suppression for central collisions
At forward rapidity R_{AA} shows stronger rise towards peripheral coll.

(surface -> volume emmission)

Looking for scaling: $dN/d\eta$?

BE: $\varepsilon = 3/2 \times (\langle E_t \rangle / S\tau_0) dN_{ch}/d\eta$ S is transwers area of overlaping region $\langle E_t \rangle$ dirived from π and K spectra

Is the energy density the only parameter that controls R_{AA} ?

New pp data @62GeV will allow for various comparisions at the same rapidities

BRAHMS

Examine d+Au at all rapidities

The BRAHMS Collaboration

I.Arsene⁷, I.G. Bearden⁶, D. Beavis¹, S. Bekele⁶, C. Besliu⁹, B. Budick⁵,
H. Bøggild⁶, C. Chasman¹, C. H. Christensen⁶, P. Christiansen⁶, R. Clarke⁹, R.Debbe¹,
J. J. Gaardhøje⁶, K. Hagel⁷, H. Ito¹⁰, A. Jipa⁹, J. I. Jordre⁹, F. Jundt², E.B. Johnson¹⁰,
C.E.Jørgensen⁶, R. Karabowicz³, N. Katrynska³, E. J. Kim⁴, T.M.Larsen¹¹, J. H. Lee¹,
Y. K. Lee⁴, S.Lindal¹¹, G. Løvhøjden², Z. Majka³, M. Murray¹⁰, J. Natowitz⁷, B.S.Nielsen⁶,
D. Ouerdane⁶, R.Planeta³, F. Rami², C. Ristea⁶, O. Ristea⁹, D. Röhrich⁸,
B. H. Samset¹¹, D. Sandberg⁶, S. J. Sanders¹⁰, R.A.Sheetz¹, P. Staszel³,
T.S. Tveter¹¹, F.Videbæk¹, R. Wada⁷, H. Yang⁶, Z. Yin⁸, and I. S. Zgura⁹

 ¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland,
 ⁴Johns Hopkins University, Baltimore, USA, ⁵New York University, USA ⁶Niels Bohr Institute, University of Copenhagen, Denmark
 ⁷Texas A&M University, College Station. USA, ⁸University of Bergen, Norway
 ⁹University of Bucharest, Romania, ¹⁰University of Kansas, Lawrence,USA
 ¹¹ University of Oslo Norway

48 physicists from 11 institutions

BACKUP SLIDES

$R_{_{dAu}}$ and $R_{_{AA}}$ for anti-protons and pions @200

BRAHMS PRELIMINARY

- suppression for π^- but stronger for AuAu
- \bullet both $R_{\scriptscriptstyle dA}$ and $R_{\scriptscriptstyle AA}$ show enhancement for p-bar

Anti-particle to particle ratios

•At 200 GeV: π⁻/π⁺ = 1.0, K⁻/K⁺ = 0.95, pbar/p = 0.75

•At 62 GeV: π⁻/π⁺ = 1.0, K⁻/K⁺ = 0.84, pbar/p = 0.45,

• At |y|<1 matter⇔antimatter

• pbar/p verus K⁻/K⁺ : good statistical model description with $\mu_B = \mu_B(y)$ with T~170MeV •But this describes also energy depencency at y=0 \Rightarrow only μ_B controls the state of matter •STAR and NA47 measures pbar/p versus Ξ^{-}/Ξ^{+}

It is not true for p+p

P. Staszel - Jagiellonian University, Kraków ICHEP, Moscow 2006

K/π ratios at η=3.1, Au+Au

Strong energy absorption model from a static 2D matter

- **Source.** (Insprired by A.Dainese (Eur.Phys.J C33,495) and A.Dainese, C.Loizides and G.Paic (hep-ph/0406201))
- Parton spectrum using pp reference spectrum
- Parton energy loss $\Delta E \sim q.L^{**2}$
- q adjusted to give observed R_{AA} at $\eta \sim 1$.

The change in dN/d η will result in slowly rising $R_{_{AA}}$.

The modification of reference pp spectrum causes the R_{AA} to be approximately constant as function of η .

Summary

Large hadron multiplicities

Almost a factor of 2 higher than at SPS energy(\leftrightarrow higher ϵ) Much higher than pp scaled results(\leftrightarrow medium effects)

Identified hadron spectra

Good description by statistical model Large transverse flow consistent with high initial density

v2(pt) is seem to not depend on rapidity

p/π

show strong η dependency for given energy depend only on \textbf{N}_{par}

High-p_⊤

suppression increases with energy for given centrality bin

weak dependency on rapidity of R_{AA} which is consistent with surface jet emission

R_{CP} can hide or enhance nuclear effects

At y=3.2 R_{AA} shows larger suppression than R_{dA}

RdAu Update: Identified Particle RdAu at

- RdAu of identified particle consistent with published h- results
- $dAu(\pi -)/dAu(\pi +)$: Valance quark isospin dominates in pp?

ICHEP, Moscow 2006

BKAHMS

Limiting Fragmentation

Shift the $dN_{ch}/d\eta$ distribution by the beam rapidity, and scale by $\langle N_{part} \rangle$. Lines up with lower energy \Rightarrow limiting fragmentation

P. Staszel - Jagiellonian University, Kraków ICHEP, Moscow 2006