Nuclear Induced Particle Suppression at Large- x_F at RHIC

J.H. Lee Physics Department Brookhaven National Laboratory

For BRAHMS Collaboration

Nov. 15 QM2006 Shanghai

Rapidity Dependent High-p_T Measurement

- At the RHIC energies, hard scattering processes at high-p_T become important
- Partons are expected to loose energy in the dense matter
- Different rapidities provide different densities of the medium: Sensitive to the dynamics
- "Dialing" initial condition channel
- Largest medium effect at midrapidity ("Scale" to multiplicity)?
- Rapidity dependent high-p_T suppression factors: provide information on dynamical medium effect

Nov. 15 QM2006 Shanghai

\textbf{R}_{CP} and \textbf{R}_{AuAu} vs η for AuAu @200 GeV

Nov. 15 QM2006 Shanghai

"High"- p_T Particle Suppression at Forward rapidities

- Expected forward "enhanced" physics processes:
 - Shadowing, Gluon saturation, Phase-space constraint/Energy conservation
- With competing physics processes:
 - Partonic energy loss, Multiple scattering, Recombination

...

...

- Shadowing+MS+Energy Loss
- "Extracted" opacity indicate longitudinally traveling Protons see less colored field
- Not a prediction: Assuming rapidity independent suppression factor

Nov. 15 QM2006 Shanghai

Particle Suppression due to Energy Conservation at Forward Rapidities/Large-x_F

- Universal suppression mechanism at large x_F seen in data for various reactions
- Expected no particles produced as $x_F \rightarrow 1$ due to energy conservation;
- more multiple interactions (more gluon radiation) make the effect larger in nuclei "Sudakov suppression"
 Kopeliovich et al: PRC72 (2005)

 $x_F = 2p_z/Js$

 Extended range of limiting fragmentation behavior on centrality dependence of particle production: Factorization of Centrality and Energy dependence

Nov. 15 QM2006 Shanghai

BRAHMS Data/Acceptance: p_T vs x_F at √s_{NN} = 200 and 62 GeV

- Strong $p_T x_F$ correlation due to limited spectrometer solid angle acceptance
- Measurements from BRAHMS Mid-Rapidity Spectrometer (MRS) and Forward Spectrometer (FS)
- "Dynamic" x_F binning in p_T 0.2 GeV/c
- R_{CP} for centrality dependence in p_T-x_F: R_{CP}(0-20/40-70%),(20-40/40-70%)

Nov. 15 QM2006 Shanghai

$R_{CP}(h^{-})$ vs x_F in Au+Au at $\int s_{NN} = 200$ and 62 GeV

- Rcp (0-20%) < Rcp (20-40%): Centrality dependent suppression in x_F<0.6
- More suppression as x_F increases at fixed p_T (0.3 ~ 2.2 GeV/c)
- For the soft Rcp increase and maximize at $p_T \sim 1 \text{ GeV/c}$
- Statistical errors only shown
- Systematic Uncertainties: 10% (p-to-p) + 10% (normalization)

Nov. 15 QM2006 Shanghai

$R_{CP}(h^+)$ vs x_F in Au+Au at $\int s_{NN} = 200$ and 62 GeV

Nov. 15 QM2006 Shanghai

R_{CP} (proton) vs x_F in Au+Au at $\int s_{NN} = 200$ and 62 GeV

- protons at high- x_F at the kinematic range dominates form initial protons
- Yet similar behavior with h-

Nov. 15 QM2006 Shanghai

Summary

• Nuclear modification factor Rcp for charges hadrons and proton for $\int s_{NN} = 200$ and 62 GeV:

-Rcp decrease with $x_{\rm F}$ at given $p_{\rm T}$

-Scaling-like behavior with x_F indicating Energy conservation might play a significant role in addition to dynamical suppression mechanism at forward region

 Constraint/input for more coherent/complete theoretical understanding on dynamics of particle suppression/production at RHIC

Back-up Slides

R_{CP} (h⁻) in dAu

- Stronger dependence of R_{CP} on x_F
- R_{CP} continuously increase with p_T

Nov. 15 QM2006 Shanghai

Recombination model at high- x_F in AuAu at 62 GeV

- Parton recombination without shower parton dominates forward particle production
- Loosening up kinematic limit and enhance particle production at high-x_F for peripheral collisions
- Protons are more efficiently produced at large-xF (valence quark dominance)

Nov. 15 QM2006 Shanghai

y vs x_F

Nov. 15 QM2006 Shanghai