Identified hadron production in d+Au and p+p collisions at RHIC

Hongyan Yang for the BRAHMS Collaboration University of Bergen, Norway

Outline

Experimental overview Preliminary results - particle spectra - particle yields and ratios - nuclear modification factor - net-protons Summary

Motivations

- rapidity dependence of particle spectra in p+p and d+Au: a reference for heavy ion collisions
 particle spectra in p+p collisions: a test of pQCD
- nuclear modification factor for nuclear effect, initial state effect?

$$R_{dAu} = \frac{d^{2} N^{d+Au} / dp_{T} dy}{N_{coll} d^{2} N^{p+p} / dp_{T} dy}$$
rapidity distribution of net-protons: stopping in elementary collisions

Identified particle spectra in p+p collisions

2007-3-27

Identified particle production in d+Au and p+p collisions at RHIC (QM2006 Shanghai, China)

Spectra at forward rapidity (pp collisions) – comparison to NLO pQCD

Same fragmentation functions as used for the PHENIX comparison at mid-rapidity. mKKP: KKP has only π^0 fragmentation. Modifications were needed to calculate charged pions. K: fragmentation function by Kretzer 2007-3-27 Identified particle production in d+Au and p+p collisions at RHIC (QM2006 Shanghai, China)

 NLO pQCD describes data also at forward rapidities

Spectra at forward rapidity (p+p collisions) p_T -dependence of ratios

Ratios y=3.0 and 3.3

 Excess of positive pions: ratio ->1/2 (valence quark counting)

 Small p/p ratio eliminates possible strong g -> p or p fragmentation

 The difference between protons and anti-protons indicates another mechanism besides fragmentation that puts so many protons at high pT.

e+e-: p+p-bar/ π ++ π - (ALEPH)

Red: p/π⁺ - Blue: p-bar/ π⁻

2007-3-27

$\mathsf{R}_{\mathsf{dAu}}$

- for hadrons, suppression was seen at forward rapidity

- Pions are suppressed, while protons are not

2007-3-27

Extraction of particle yields (p+p)

2007-3-27

Rapidity distributions

like-particle ratios (p+p)

K/ π , p/ π ratios (p+p)

Open symbols: positive particles Closed symbols: negative particles

All ratios decrease with increasing rapidity , except p/π +

Net-proton distribution

p_T [GeV/c]

Subtraction of p-bar yield from proton yield for each p_T bin
 A Boltzmann function is used to fit the data

2007-3-27

2007-3-27

Net-proton distribution (d+Au)

Summary

- NLO pQCD describes p_T spectra at forward rapidities in p+p collisions
- R_{dAu}: suppression of h⁻ yields at forward rapidities confirmed by identified hadrons spectra
 - Strong suppression of pions
 - No suppression of protons
- HIJING/B describes the net-protons in p+p better than PYTHIA
- Net-protons are piled up at mid-rapidity in central d+Au collisions

BRAHMS Collaboration

I. C. Arsene¹², I. G. Bearden⁷, D. Beavis¹, S. Bekele¹², C. Besliu¹⁰, B. Budick⁶, H. Bøggild⁷, C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, H.Dahlsgaard⁷, R. Debbe¹, J. J. Gaardhøje⁷, K. Hagel⁸, H. Ito¹, A. Jipa¹⁰, E.B.Johnson^{11,} J. I. Jørdre⁹, C. E. Jørgensen⁷, R. Karabowicz⁵, N. Katrynska⁵, E. J. Kim¹¹, T. M. Larsen⁷, J. H. Lee¹, Y. K. Lee⁴, S. Lindahl¹², G. Løvhøiden¹², Z. Majka⁵, M. J. Murray¹¹,
J. Natowitz⁸, C.Nygaard⁷B. S. Nielsen⁸, D. Ouerdane⁸, D.Pal¹², F. Rami³, C. Ristea⁸, O. Ristea¹¹, D. Röhrich⁹, B. H. Samset¹², S. J. Sanders¹¹, R. A. Scheetz¹, P. Staszel⁵, T. S. Tveter¹², F. Videbæk¹, R. Wada⁸, H. Yang⁹, Z. Yin⁹, I. S. Zgura²

1. Brookhaven National Laboratory, Upton, New York, USA

- 2. Institute of Space Science, Bucharest Magurele, Romania
- 3. Institut Pluridisciplinaire Hubert Curien et Université Louis Pasteur, Strasbourg, France
- 4. Johns Hopkins University, Baltimore, USA
- 5. M. Smoluchkowski Institute of Physics, Jagiellonian University, Krakow, Poland
- 6. New York University, New York, USA
- 7. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- 8. Texas A&M University, College Station, Texas, USA
- 9. University of Bergen, Department of Physics and Technology, Bergen, Norway
- 10. University of Bucharest, Romania
- 11. University of Kansas, Lawrence, Kansas, USA
- 12. University of Oslo, Department of Physics, Oslo, Norway