Transverse Single-Spin asymmetriesfor π + and π - production in ppcollisions at $\sqrt{S} = 200 \text{ GeV}$

- Introduction
- Experimental setup and considerations
- Preliminary Physics results
- Conclusion and Prospects

F.Videbaek

Introduction

 $A_n = (\sigma^+ - \sigma^-) / (\sigma^+ + \sigma^-)$

Where the spin cross section is determined with the spin direction defined by $k_b \ge k_{pi}$

- Early (naive) QCD predicted this effect to be small
- Non-zero Single Transverse Spin Asymmetry (SSA/ A_n) requires Spin Flip Amplitude and phase difference in intrinsic states
- Such studies may clarify properties of transverse quark structure of the nucleon
- Sivers effect [Phys Rev D41 (1990) 83; 43 (1991) 261]

Flavor dependent correlation between the proton spin, momentum and transverse momentum of the un-polarized partons inside the proton.

Collins effect [Nucl Phys B396 (1993) 161]
 Correlation between the quark spin, momentum and transverse momentum of the pion.

Background

Low energy data (FNAL E704) show clear differences between π^{+-} and π^{0} .

D.L.Adams (E704) Phys.Lett B264,462(1991); Phys.Rev. D53, 4747 (1996).

Recent STAR results on π^0 also shows a significant SSA/ A_n at RHIC energies. Preliminary BRAHMS data was shown at DIS05.

RHIC pp accelerator complex

RHIC beam transversely polarized at BRAHMS detector

Kinematic Variables

- The kinematic variables of interest are Feynman x (x_F) and p_T .
- Shown is the BRAHMS acceptance for the data taken at $\theta = 2.3$ deg and the maximum field setting (7.2 Tm).
- The acceptance is not straight in angle or η. Illustrated in this plot. Thus care should be taken when comparing to both other experiments and to theory.

The momentum resolution is δp/p~1% at 22 GeV/c.

PANIC, October 27, 2005

Determination of Asymmetries.

Asymmetries are determined from $A_n = (\sigma^+ - \sigma^-) / (\sigma^+ + \sigma^-)$

Experimentally determined from A_n = 1.0 /P (N⁺ - L^{*}N⁻) / (N⁺ + L^{*}N⁻), where L = L⁺ / L⁻

Need to know

- **Beam Polarization**
- Bunch Luminosities
- _ Pion rates in spectrometer

Beam Polarization

These are obtained from the CNI online polarimeter normalized to a Gas Jet Target measurements

PANIC, October 27, 2005

Single Spin Asymmetries in BRAHMS

Determination of Asymmetries.

Asymmetries are determined from $A_n = (\sigma^+ - \sigma^-) / (\sigma^+ + \sigma^-)$

Experimentally determined from A_n = 1.0 /P (N⁺ - L^{*}N⁻) / (N⁺ + L^{*}N⁻), where L = L⁺ / L⁻

Need to know

- _ Beam Polarization
- Bunch Luminosities
- Pion rates in spectrometer

Bunch Luminosities

- Bad bunches with different intensity outside norm is rejected.
- L+/L- ~ 1.05-1.15 typical factors

2005

Run-5 have more systematic check with varying patterns.
 Since the up and down spin patterns alternate most time-dependent systematic errors are small. The main issue is determination of the L⁺ and L^{-.}

Luminosity variation vs. runs

Determination of Asymmetries.

Asymmetries are determined from $A_n = (\sigma^+ - \sigma^-) / (\sigma^+ + \sigma^-)$

Experimentally determined from $A_n = 1.0 /P (N^+ - L^*N^-) / (N^+ + L^*N^-),$ where L = L⁺ / L⁻

Need to know

- _ Beam Polarization
- **Bunch Luminosities**
- _ Pion rates in spectrometer

PID using RICH

Good track are selected in spectrometer; determining momenta.

Pions identified from momentum and radius measured in a Ring Imaging Cherenkov Counter.

The pion identification is clean up to 35 GeV.

Measured radius vs. calculated showing the selected pions Rich radius vs p All

PANIC, October 27, 2005

Hadron Spectra

- Spectra for other charged hadrons are forth coming
- Such spectra will provide a testing ground for pQCD

PANIC, October 27, 2005

Single Spin

A_N measurements for π^-

Measurements at 2.3 and 4 degrees. Results averages of p_T range in each setting.

PANIC, October 27, 2005

Single Spin Asymmetries in BRAHMS

Summary of p_T dependence

0.15-0.30 in Xf

- A_N(pi-) 0.078+-0.002 low p_T
- A_{N} (pi-) 0.045+-0.003 higher P_{T}
- A_{N} (pi+) 0.066+-0.002 low p_{T}

Systematic errors from online polarization is (presently estimated at ~20% [scale])

Twist 3 (initial state) calculations by J.Qiu and G.Sterman, Phys.ReV.D59,014004(98) Extrapolated to lower p_T

Single Spin Asymmetries in BRAHMS

PANIC, October 27, 2005

17

Comparison to data within acceptance.

The A_N for π^+ in the theory is ~ A_N for π^- with opposite sign The theory does predict a lowering at higher p_T and a nearly flat distribution with x_F in the acceptance.

Other results.

 Using polarization from opposite beam (yellow), we obtain A_N equivalent to asymmetries for negative x_F

Brahms will also access other charged hadrons; p+-, K⁺⁻.

Conclusions

- BRAHMS has obtained the preliminary result for single spin asymmetries for π⁺ and π⁻ in 200 GeV pp collisions at RHIC in the x_F range of 0.17 to 0.35
- The A_N values for π⁺ and π⁻ are significantly different with opposite sign
- The absolute A_N value for π⁻ decrease with increasing p_T
- The sign of A_n is consistent with behavior from lower energy data
- A_n at negative x_F for π⁺ and π⁻ are consistent with 0 The protons are found to have A_N ~0

The BRAHMS Collaboration

I.Arsene^{7,12}, I.G. Bearden⁶, D. Beavis¹, S. Bekele⁶, C. Besliu⁹, B. Budick⁵,
H. Bøggild⁶, C. Chasman¹, C. H. Christensen⁶, P. Christiansen⁶, R. Clarke⁹, R.Debbe¹,
J. J. Gaardhøje⁶, K. Hagel⁷, H. Ito¹⁰, A. Jipa⁹, J. I. Jordre⁹, F. Jundt², E.B. Johnson¹⁰,
C.E.Jørgensen⁶, R. Karabowicz³, E. J. Kim⁴, T.M.Larsen¹¹, J. H. Lee¹, Y. K. Lee⁴,
S.Lindal¹¹, G. Løvhøjden², Z. Majka³, M. Murray¹⁰, J. Natowitz⁷, B.S.Nielsen⁶,
D. Ouerdane⁶, R.Planeta³, F. Rami², C. Ristea^{6,9}, O. Ristea⁹, D. Röhrich⁸,
B. H. Samset¹¹, D. Sandberg⁶, S. J. Sanders¹⁰, R.A.Sheetz¹, P. Staszel³,
T.S. Tveter¹¹, F.Videbæk¹, R. Wada⁷, H. Yang⁶, Z. Yin⁸, and I. S. Zgura¹²

¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland, ¹²Institute of Space Science,Bucharest ⁴Johns Hopkins University, Baltimore, USA, ⁵New York University, USA ⁶Niels Bohr Institute, University of Copenhagen, Denmark ⁷Texas A&M University, College Station. USA, ⁸University of Bergen, Norway ⁹University of Bucharest, Romania, ¹⁰University of Kansas, Lawrence,USA ¹¹University of Oslo Norway

48 physicists from 11 institutions