Rapidity Dependence of Elliptic Flow at RHIC

PANIC 2005 Santa Fe, NM October 27, 2005 Erik Johnson University of Kansas

Overview of Flow

$$\frac{d^{3}N}{2\pi p_{T}dp_{T}dyd(\phi - \Psi_{R})} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy}(1 + \sum_{n} 2v_{n}\cos[n(\phi - \Psi_{R})])$$

Initial collision geometry leads to pressure gradients in the produced medium.
The density of particles produced is correlated to these gradients.

BRAHMS

Flow History

Flow at Forward Rapidities

- Interesting to understand how flow affects the dynamics at forward rapidities.
- p: Phys. Rev. Lett. 93, 102301 (2004)
- π, K: Phys. Rev. Lett. 94, 162301 (2005)

$$AuAu\sqrt{s_{NN}}=200\,GeV$$

BRAHMS Experiment

Measuring the Reaction Plane

- A.M. Poskanzer and S.A. Voloshin PRC 58, 1671(1998)
- Reaction Plane Determined For
 - Multiplicity Array Rings
 - 1 Ring in the Left BB Counters
- Corrections
 - Normalized the weights based on the average signal in the ring's elements.
 - Centered the $\langle \Sigma \sin \rangle$ and $\langle \Sigma \cos \rangle$ values.
 - Flattened the distribution using a Fourier decomposition: Barrette et al (E877 Collaboration) PRC 56, 3254 (1997)

$$\Psi_n = \frac{1}{n} \operatorname{atan} \frac{\sum_i w_i \sin(n \phi_i)}{\sum_i w_i \cos(n \phi_i)}$$

Measuring the Resolution Correction

- The measured flow signal is corrected for the reaction plane resolution.
- Non-flow correlations are limited by choosing detectors whose effective η coverage is not overlapping.
- The resolution correction is determined using the correlation between three reaction plane measurements.

$$v_{2} = \frac{BGCor}{ResCor} \frac{\sum_{i} w_{i} \cos 2(\phi_{i} - \Psi_{2})}{\sum_{i} w_{i}}$$

 η Coverage vs Vertex: Vertex Spread = \pm 0.50 cm (Spec Vtx): Eta Ban = 0.2 L SiRings a,c-g Large BBL Flow Ring 2 Flow Ring 3 Tile -2 -3 -30 -20 -10 10 20 30 0 Vertex (cm)

$$ResCor = \sqrt{\frac{\langle \cos[2(\Psi_a - \Psi_b)] \rangle \langle \cos[2(\Psi_a - \Psi_c)] \rangle}{\langle \cos[2(\Psi_b - \Psi_c)] \rangle}}$$

Integrated v₂

 Phobos Results: Submitted to Phys. Rev. C (Rapid Comm.) : (nucl-ex/0407012) Background and other non-flow effects are corrected using GEANT simulations.

 $AuAu\sqrt{s_{NN}}=200\,GeV$

Particle Identification

BRAHMS TOF

BRAHMS

BRAHMS Cherenkov

 BRAHMS has very healthy and high quality spectrometers.

Flow at Mid-Rapidity

Reproducing the Centrality Dependence

Phobos Results (nucl-ex/0407012)

 $AuAu\sqrt{s_{NN}}=200 \, GeV$

Pions at Forward Rapidities

Rapidity Dependence of Charged Hadrons

Oct 27, 2005 PANIC Sante Fe

BRAHMS

Understanding Forward Rapidities

Summary

- The systematics of multiplicity array analysis are well understood.
- The mid-rapidity results from BRAHMS are consistant with the other RHIC results.
- Preliminary results of the forward rapidities show that there is little change from mid to forward rapidities for charged hadrons.
- The goal is to measure the elliptic flow signal for protons and kaons from y = 0 to y ~ 3.

The BRAHMS Collaboration

I. Arsene¹⁰, I.G. Bearden⁷, D. Beavis¹, S.Bekele¹¹, C. Besliu¹⁰, B. Budick⁶,
H. Bøggild⁷, C. Chasman¹, C. H. Christensen⁷, P. Christiansen⁷, R.Clarke¹⁰,
R. Debbe¹, J. J. Gaardhøje⁷, K. Hagel⁸, H. Ito¹, A. Jipa¹⁰, J. I. Jordre¹⁰, F. Jundt^{2,}
E.B.Johnson¹¹, J.I.Jordre⁹, C.Jørgensen⁷, R. Karabowicz³, E. J. Kim¹¹,
T.M. Larsen⁷, J. H. Lee¹, Y. K.Lee⁵, S.Lindal¹², G. Løvhøjden², Z. Majka³,
M. Murray¹¹, J. Natowitz⁸, B.S.Nielsen⁷, D.Ouerdane⁷, R.Planeta⁴, F. Rami²,
C.Ristea⁷, O.Ristea¹⁰, D. Röhrich⁹, B. H. Samset¹², S. J. Sanders¹¹, R.A.Sheetz¹,
P. Staszel³, T.S. Tveter¹², F.Videbæk¹, R. Wada⁸, H.Yang⁹, Z. Yin⁹, and
I. S. Zgura¹⁰

¹Brookhaven National Laboratory, USA,
²IReS and Université Louis Pasteur, Strasbourg, France
³Jagiellonian University, Cracow, Poland
⁴Institute of Nuclear Physics, Cracow, Poland
⁵Johns Hopkins University, Baltimore, USA
⁶New York University, USA
⁷Niels Bohr Institute, University of Copenhagen, Denmark
⁸Texas A&M University, College Station. USA
⁹University of Bergen, Norway
¹⁰University of Bucharest, Romania
¹¹University of Kansas, Lawrence, USA
¹² University of Oslo Norway