Rapidity Dependent Transverse Flow at RHIC

- $\cdot \pi$,K,p spectra vs y for central Au+Au at 200 GeV
- mean p_T vs y (0<y<3.5)
- Blast-Wave Fits vs y (y~0,1,2,3)
- Summary

J.H. Lee Brookhaven National Laboratory

for the BRAHMS Collaboration

APS/DNP 2003

Characterizing "Thermal" Source with Transverse Flow

RRAHMS

- Curvature and Slope of $m_{\scriptscriptstyle T}$ spectra increase with particle mass
 - measure inverse slope parameter (T_{obs}) , $\langle p_T \rangle$ of identified particles
 - $T_{obs} = T_{fo} + mass^*\beta^2$
- Hydro-inspired Blast-Wave fits to deduce freeze-out parameters
 - o Local thermal equilibrated source or boosted system
 - o parameterization with Flow velocity (β), freeze-out Temperature (T_{fo}) and System Geometry (size and profile)
 - o Schnedermann et al. PRC48(1993)

$$\frac{dn}{m_T dm_T} \propto \int_0^R r \, dr \, m_T K_1 \left(\frac{m_T \cosh \rho}{T_{th}}\right) I_0 \left(\frac{p_T \sinh \rho}{T_{th}}\right)$$

-Thermal Freeze-out Temperature: T

- boost angle: $\rho = \tanh^{-1}\beta$

-Transverse velocity: $\beta(r) = \beta_s (r/R_{max})^{\alpha}$

How does Transverse Flow develop with rapidity?

- <p_>vs y
- BW Fit with T, β , α vs y

 π^+ and π^- (0-5% Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$) (0 \le y \le 3.5)

BRAHMS

- pion spectra shown with power-law fits (Divided by 10 successively from top)
- Fitting ranges for BW fits shown with dashed lines (-resonance, -"hard" part)
- "Inverse Slope" (from 0.3-1.0GeV): slowly decrease with rapidity (~220MeV -> ~200MeV)
- dN/dy shape: close to a Gaussian with $\sigma(\pi^+) \sim \sigma(\pi^-) \sim 2.3$

K⁺ and K⁻(0-5% Au+Au at √s_{NN} = 200 GeV) (0≤y≤3.3)

• Kaon spectra shown with m_T exponential fits (Divided by 10 successively from top)

- Inverse Slope: smoothly decrease with rapidity (~300MeV -> ~230MeV)
- dN/dy shape: close to a Gaussian with $\sigma(K^+)$ ~2.4 $\sigma(K^-)$ ~2.1

- proton and pbar spectra shown with Gaussian fits
- Spectra are summed over rapidity ranges of δ y=0.4-0.6 due to statistics+acceptance
- Λ feed-down corrections are not applied

> vs rapidity with models

- Calculated from fitting spectra ٠
- <p_> decrease with y: π ~10% K and p ~15-20% drop from y=0 to y~3 ٠
- AMPT and 3D-Hydro model under-predict $\langle p_T \rangle$ ٠
- 3D-Hydro describe y-dependence qualitatively with a single T_{th} value • $(T_{th} = 100 \text{ MeV}, T_{ch} = 170 \text{ MeV})$

Spectra with BW Fits at y~0,1,2,3 (T, β_s , α in the fit R_{max}=13fm)

T vs β (1 σ and 3 σ contours with fixed α =0.31)

β_{s} vs y and T vs y

BRAHMS

• Fits done with a fixed α (y=0 value) and T (or β_s)

- β_s decrease with y :~25% decrease from y~0 to y~3
- β_s =0.74-0.54 (<β>=0.64-0.47), T=100-138 MeV
- Naïve picture: lower particle density->easier/faster to be frozen->higher temperature

- BRAHMS measured identified hadron spectra in 0 ≤ y ≤ 3.5 in Au+Au at √s_{NN} = 200 GeV
- $\langle p_T \rangle$ increase with particle mass and decrease with rapidity
- Blast-Wave parameterization describes data with T and β
- Hydro-dynamical behavior/re-scattering in a wide rapidity range at RHIC
 - Strong collective transverse flow: $\langle \beta \rangle \sim 0.64 0.47$
 - Thermal Freeze-out temperature: T~ 100 137 MeV
 - Transverse flow decrease (~25%) with rapidity from y=0 to y~3 while temperature tends to increase
 - Consistent with Hydro calculations, especially at y≠0?
 Constraint for models.