HBT in BRAHMS

J.H. Lee BNL Correlations Fest, June 2002, BNL

Outline

- BRAHMS Detectors
 - 2 Spectrometers, Global detectors
 - Upgrade for Extended PID
- HBT in BRAHMS
 - What BRAHMS can/can't do: pros and cons
 - Very Preliminary correlations with limited statistics from Run2
 - Plan for Run3
- Flow measurements in BRAHMS
 - Detector reconfiguration
- Summary/Outlook

BRAHMS

Broad RAnge Hadron Magnetic Spectrometers

DT, D2, D3, D4, D5: Oppole magnets T1, T2, T3, T4, T5, TPC1 TPC2: tracking detectors H1, H2, TOFW: Time-of-flight detectors FICH, GASC: Cherenkov detectors 2 Movable Spectrometers: (Mid-rapidity Spectrometer and Forward Spectrometer) for track reconstruction and Particle identification

Centrality Detectors:

Tiles, Silicon Strips, Beam-Beam counters, Zero-degree Calorimeters for event characterization

Collaboration of ~55
 Physicists from 11 institutions

Mid-rapidity Spectrometer (rotates 30°-95°)

Rail (for moving spectrometer)

Forward Spectrometer (rotates 2.5°-30°)

- $\sim 20 \text{ m long}$
- 2 TPC's: T1 and T2
- 3 DC's: T3,T4,T5
- 4 Magnets: D1,D2,D3,D4
- 2 ToF Hodoscopes: H1, H2
- 1 Cerenkov Counter: C1
- 1 RICH

Global Detectors

- Beam-Beam Counters
 - Provide a start time and trigger
 - Measure multiplicity at high η (2.1 < $|\eta|$ < 4.7)
- Multiplicity Detectors
 - -Tile (TMA) and Si Arrays (SiMA)
 - Provide charged particle multiplicity (-3 < η < 3)
 - Used to characterize centralities of events
- Zero Degree Calorimeters
 - Identifying collisions

Particle Identification

Mid-rapidity Spectrometer

Forward Spectrometer

8

RICH

10

15

20

25

9

- 125 slats: time of flight resolution ~ 75psec
- π/K separation ~ up to 2.5 GeV/c
- K/p separation ~ up to 4 GeV/c
- An additional detector(s) is needed for identifying higher p_t particles (Cherenkov).

Extended PID for High pt measurements

HBT in BRAHMS

- Good Tracking and PID (δp/p = 1-3% depending on field)
- Can measure $y_{\pi\pi}$ up to 3.5

- Small Solid Angle
 - Need good luminosity
 - limited acceptance

HBT in BRAHMS

- Best place for the measurement for BRAHMS: MRS at ~40° (y~1)
 - + multiplicity: number of pairs ~ 4*90deg
 - + kinematics: $q_T \sim q_L$
- At very forward rapidities $(p_L \gg p_T)$: poor resolution for q_L
- Very limited statistics for HBT from Run2
- Analysis in Progress: Finite momentum resolution effect, Background correlation, Corrections..

Rapidity-Dependent Transverse Source Size Measurements

HBT for Run3

- High luminosity + Spec trigger + Extended PID
- Large statistics runs for HBT + "high-pt"
 - MRS at 40 degree: y ~ 1
 - MRS at 90 degree: y ~ 0
 - FS at 4 degree: y ~ 3
- Rapidity/ p_T dependent source size measurements
- Possibility of measuring reaction plane dependent HBT measurement

Multiplicity/Centrality Detectors

Flow Measurements in BRAHMS

Reconfiguring Si Arrays for high segmentations in ϕ 6x7 = 42 segmentations $2 < \eta < 2.5$ at nominal vertex Reaction plane information for spectral physics Pseudo-rapidity dependent v_2 measurement ($\eta = 0 - 3$) Simulation in progress Considered for Run3/2002

Summary

- Rapidity dependent HBT can be measured in BRAHMS
- Very limited statistics for HBT from Run2: Analysis in progress
- High statistics data collection at selected rapidities for HBT in Run3
- Flow Measurement in BRAHMS by reconfiguring Si-Array

The BRAHMS Collaboration

I.G. Bearden⁷, D. Beavis¹, C. Besliu¹⁰, Y. Blyakhman⁶, J. Bondorf⁷, J.Brzychczyk⁴, B. Budick⁶,
H. Bøggild⁷, C. Chasman¹, C. H.Christensen⁷, P. Christiansen⁷, J.Cibor⁴, R.Debbe¹, J. J. Gaardhøje⁷,
K. Grotowski⁴, K. Hagel⁸, O. Hansen⁷, H. Heiselberg⁷, A. Holm⁷, A.K. Holme¹², H. Ito¹¹, E.Jacobsen⁷,
Jipa¹⁰, J. I. Jordre¹⁰, F. Jundt², C. E. Jørgensen⁷, T.Keutgen⁹, E. J. Kim⁵, T. Kozik³, T.M.Larsen¹², J. H. Lee¹, Y. K.Lee⁵, G. Løvhøjden², Z. Majka³, A. Makeev⁸, B. McBreen¹, M. Murray⁸, J.Natowitz⁸, B.S.Nielsen⁷, K. Olchanski¹, D. Ouerdane⁷, R.Planeta⁴, F.Rami², C.Ristea¹⁰, D.Roehrich⁹,
B. H. Samset¹², S. J. Sanders¹¹, R.A.Sheetz¹, Z.Sosin³, P. Staszel⁷, T.S. Tveter¹², F.Videbæk¹, R.Wada⁸ and A.Wieloch³, S.Zgura¹⁰.

¹Brookhaven National Laboratory, USA
²IReS and Université Louis Pasteur, Strasbourg, France
³Jagiellonian University, Cracow, Poland
⁴Institute of Nuclear Physics, Cracow, Poland
⁵Johns Hopkins University, Baltimore, USA
⁶New York University, USA
⁷Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Denmark
⁸Texas A&M University, College Station. USA
⁹University of Bergen, Norway
¹⁰University of Bucharest, Romania
¹¹University of Kansas, Lawrence, USA
¹² University of Oslo Norway